
Is it possible to unify sequential programs?

Tatyana A. Novikova1 and Vladimir A. Zakharov2

1 Kazakhstan Branch of Lomonosov Moscow State University
2 Lomonosov Moscow State University
(taniaelf@mail.ru, zakh@cs.msu.su)

Abstract

We introduce a first-order model of imperative sequential programs and set up formally
the unification problem in this model: given a pair of programs π1 and π2 find a pair of sub-
stitutions (θ1, θ2) such that the instances π1θ1 and π2θ2 of these programs are equivalent,
i.e. compute the same function. Since functional equivalence of programs is undecidable,
we choose its decidable approximation — a strong equivalence, — which is well-known in
theory of program schemata. Our main result is a polynomial time unification algorithm
for sequential programs w.r.t. strong equivalence of programs.

1 Introduction

To unify a pair of terms is to find such instances of these terms that are identical (syntactical
unification) or have the same meaning (semantical unification). Imperative sequential programs
are expressions in some formal language, and they can be also regarded as terms. The meaning
of every program is the input-output function computed by the program. Then, is it possible,
given a pair of sequential programs, to initialize their input variables in such a way that the
instances of these programs would have the same meaning, i.e. compute the same function?
A unification algorithm which gives solution to this problem would be very much helpful in
program verification, specialization, clone detection, refactoring, etc.

In Section 2 we recall briefly the basic notions of unification theory. Afterwards, a formal
first-order model of sequential programs is introduced. In the framework of this model we set up
formally the problem of program unification w.r.t. functional equivalence of programs (which is
undecidable) and strong equivalence of programs (which is decidable and under-approximates
functional equivalence). In Section 4 we introduce and study a new operation on substitutions
— reduced anti-unification, — which is crucial for efficient equivalence checking and unification
of programs under consideration. We show that this operation has the same set of useful
algebraic properties as ordinary anti-unification of substitutions but unlike the latter it can be
computed in linear time on substitutions presented by labeled directed acyclic graphs. Using
this operation we develop an efficient procedure for checking strong equivalence of programs; it is
described in Section 5. And, finally, we adapt this procedure to unification problem and obtain
an algorithm for unification of sequential programs w.r.t. strong equivalence in polynomial
time.

2 Preliminaries.

In this paper we deal with the first-order language over some fixed sets of functional symbols F
and predicate symbols P. Letters X ,Y . . . will be used for sets of variables. The sets of terms
Term[X] and Atom[X] over a set of free variables X are defined as usual. Terms and atoms
are interpreted over algebraic structures (first-order interpretations) I = 〈DI ,FI ,PI〉, where

• DI is an arbitrary non-empty carrier set,

K. Korovin, B. Morawska (eds.), UNIF 2013 (EPiC Series, vol. 19), pp. 35–45 35

Is it possible to unify sequential programs? T.A. Novikova, V.A. Zakharov

• FI is an operator which assigns to every k-ary functional symbol f from F a total function
f : Dk

I → DI ,

• PI is an operator which assigns to every m-ary predicate symbol p from P a total relation
p : Dm

I → {>,⊥}.

Given a first-order interpretation I = 〈DI ,FI ,PI〉 and an evaluation d : X → DI of variables
we write t[d]I and A[d]I for the value of a term t from Term[X] and for the truth value of an
atom A from Atom[X] respectively on the evaluation d.

Let X = {x1, . . . , xn} and Y = {y1, y2, . . . } be two sets of variables. The set Subst[X ,Y]
of X -Y-substitutions is the set of mappings θ : X → Term[Y]. Every such mapping can be
represented as a set of bindings θ = {x1/θ(x1), . . . xn/θ(xn)}. The set of all variables that
occur in terms θ(x1), . . . , θ(xn) is denoted by V arθ. An application of a substitution θ to a
term t(x1, . . . , xn) yields the term tθ = t(θ(x1), . . . , θ(xn)) obtained from t by replacing for
every variable xi, 1 ≤ i ≤ n, all its occurrences in t with the term θ(xi). An application of θ
to an atom A is defined accordingly. We write tθ and Aθ for the application of a substitution
θ to a term t and to an atom A respectively.

A composition of a X -Y substitution η and a Y-Z substitution θ is a X −Z substitution ξ
such that the equality xξ = (xη)θ (or in other notation ξ(x) = (η(x))θ) holds for every x, x ∈ X .
To denote the composition of η and θ we will use an expression ηθ; since t(ηθ) = (tη)θ holds for
every term t, t ∈ Term[X], this notation makes it possible to skip parentheses when writing
tηθ for the application of a composition of substitutions to a term.

If X ′ and X ′′ are disjoint sets of variables and θ′ ∈ Subst[X ′,Y], θ′′ ∈ Subst[X ′′,Y] then
the union θ′ ∪ θ′′ is a substitution η, η ∈ Subst[X ′ ∪X ′′,Y], such that η(x) = θ′(x) for every x
from X ′ and η(x) = θ′′(x) for every x from X ′′.

Substitution may affect not only variables but their evaluations as well. Given a substitution
η from Subst[X ,X], an interpretation I, and an evaluation d we denote by η[d] an evaluation
d′ such that d′(x) = η(x)[d]I for every x, x ∈ X .

With the notion of composition of substitutions at hand, we can define a quasi-order �
and an equivalence relation ∼ on the set of substitutions Subst[X ,Y] as follows. A relation
θ1 � θ2 holds iff θ2 = θ1ξ for some ξ ∈ Subst[Y,Y], and θ1 ∼ θ2 holds iff θ1 = θ2ρ holds for some
bijection ρ from V arθ2 to V arθ1 . In what follows we will not distinguish equivalent substitutions.
When θ1 � θ2 we say that θ1 is a template of θ2. As it was shown in [4, 10], the quasi-ordered
set (Subst[X ,Y],�) is a quasi-lattice. This lattice becomes complete when it is supplied with
a virtual substitution τ for the greatest element. The greatest lower bound glb(θ1, θ2) is the
most specific common template of θ1 and θ2. For example, if θ1 = {x1/f(g(y1), y2), x2/g(y1)}
and θ2 = {x1/f(y1, g(y2)), x2/y1} then glb(θ1, θ2) = {x1/f(y′1, y

′
2), x2/y

′
1}.

In [12, 13, 15] the operation of computing glb(θ1, θ2) is called anti-unification, or gener-
alization. It has been first considered by G.D. Plotkin [12] and J. Reynolds [13], studied in
[4, 10] and found applications in supercompilation [15], symbolic computing [9, 16], program
verification and refactoring [2, 3].

A unifier of a given set of pairs of atoms H = {(A′i, A′′i) : i ∈ I} is a substitution η such
that A′iη = A′′i η for every i, i ∈ I. The most general unifier of H will be denoted by mgu(H).

3 A model of imperative sequential programs

Imperative sequential programs are built up from assignment statements and tests. An assign-
ment statement s is an expression x ⇐ t, where x ∈ X , t ∈ Term[X]; it updates a value of x
and can be specified by a substitution ηs = {x/t}. Then a finite sequence of assignments (linear

36

Is it possible to unify sequential programs? T.A. Novikova, V.A. Zakharov

fragment, in software engineering terms) h = s1; s2; . . . ; sk corresponds to the composition of
substitutions ηh = ηsk · · · ηs2ηs1 . A test is nothing more than an atom A from Atom[X].

An imperative sequential program is a labeled transition system

π(X) = 〈X , L, start, stop, ϕ, ψ〉 ,

where L is a finite set of locations, start and stop are distinguished entry and exit locations,
ϕ : L→ Atom[X] is a placement of tests, and ψ : (L \ {stop})× {0, 1} → L× Subst[X ,X] is a
transition function. For the sake of clarity when a program π(X) is assumed we will write A`
instead of ϕ(`) and `′

σ,η−→ `′′ instead of ψ(`′, σ) = (`′′, η). Without loss of generality we also
assume that the location stop is always labeled with the atom P (x1, x2, . . . , xn) which occurs
nowhere else in a program.

A run of π(X) on an evaluation d in an interpretation I is the maximal sequence of pairs

π(d)I = (d0, `0), (d1, `1), . . . , (di, `i), (di+1, `i+1), . . . ,

such that

1. d0 = d, `0 = start, and

2. for every i, i ≥ 0, if `i 6= stop then there exists a transition `i
σ,ηi−→ `i+1 in the program

π(X) such that σ = A`i [di] and di+1 = ηi[di]I .

In other words, at every step i of a run the program checks the truth value σ of an atom A`i
on the current data state di, passes the control to the next location `i+1, and updates the data
state di by executing the corresponding linear fragment specified by the substitution ηi. A run
terminates at a step N iff `N = stop. Then the evaluation dN is regarded as the result [π(d)I]
of the run. Otherwise the run π(d)I is infinite and gives no results. Programs π1(X) and π2(X)
are equivalent iff [π1(d)I] = [π2(d)I] holds for every interpretation I and every evaluation d.
The equivalence of programs defined thus is called functional equivalence.

Let η be a substitution from Subst[X ,X] and π(X) = 〈X , L, start, stop, ϕ, ψ〉 be a program.
Then the application of a substitution η to a program π yields an instance π(X)η of a program
π(X). The instance π(X)η is formally obtained by adding a new entry location start0 to the
program π(X) and extending a placement of test ϕ and a transition function ψ in such a way
that ϕ(start0) = true, and ψ(start0, 0) = ψ(start0, 1) = (start, η). Thus, each run of π(X)η
begins with the execution of a linear fragment which initializes the variables in accordance to
the substitution η. After initialization the run π(X)η on an evaluation d follows just as the
run of π(X) on the evaluation η[d]. We say that a pair of substitutions (η1, η2) is a unifier of
programs π1(X) and π2(X) iff the instances π1(X)η1 and π2(X)η2 are equivalent.

Since functional equivalence of sequential programs is undecidable (see [6, 7]), the unification
problem w.r.t. such equivalence of programs is undecidable as well. To achieve some positive
results one should apply to a more strong equivalence of programs which 1) is decidable, and
2) subsumes functional equivalence. Such equivalence of programs was introduced in [5].

Given a program π(X) = 〈X , L, start, stop, ϕ, ψ〉 we say that a finite sequence of transitions

α = `0
σ1,η1−→ `1

σ2,η2−→ · · · σm−1,ηm−1−→ `m−1
σm,ηm−→ `m

is a trace in π(X) from a location `0 to a location `m. A trace α is called complete if `0 = start
and `m = stop. A history of a complete trace α is the sequence of pairs

h(α) = (Astartµ0, σ1), (A`1µ1, σ2), . . . , (A`m−1µm−1, σ1), (P (x1, x2, . . . , xn)µm, 1) ,

37

Is it possible to unify sequential programs? T.A. Novikova, V.A. Zakharov

�� ��start true

??

0 1
θ1θ1�� ��`1 P1(f(u))

??

0 1
θ2ε�� ��

`2

P2(x)� -0 1ε θ3
�� ��exit

�� ��
`2

P1(v)
	 0

θ4

I 1

θ5

�� ��start true

??

0 1
η1η1�� ��`1 P1(v)

??

0 1
η3η2�� ��

`2

P2(x)�

�
�

�

0

1

η4 η5
�� ��exit

θ1 = {x/h(z), y/g(u), z/f(z)}
θ2 = {u/h(u)}
θ3 = {x/h(x), v/f(u)}
θ4 = {y/g(y)}
θ5 = {u/h(u)}

η1 = {x/z, v/f(u), y/u}
η2 = {x/h(x), y/g(y)}
η3 = {x/h(x), u/h(u)}
η4 = {y/g(y), z/f(z)}
η5 = {v/f(u)}

Figure 1: A pair of strongly equivalent programs

where µ0 = ε (empty substitution), and µi = ηiµi−1 for every i, 1 ≤ i ≤ m. Thus, the first
component of every pair (A`iµi, σi+1) is just the atom at the location `i instantiated by the com-
position ηi · · · η1 of substitutions assigned to the transitions of the corresponding prefix of α. A
determinant of a program π(X) is the set Det(π(X)) = {h(α) : α is a complete trace in π(X)}.
Programs π1(X) and π2(X) are called strongly equivalent iff Det(π1(X)) = Det(π2(X)). A pair
of strongly equivalent programs is depicted on Fig. 1.

As it can be seen from this definition, the determinant is a syntactic characteristic of a
program. Nevertheless, the strong equivalence is far more weaker than any other equivalence
of programs (say, isomorphism of programs) which does not involve the concept of a run π(d)I .
Moreover, in [5, 14] it was shown that strong equivalence is suitable for many applications in
program analysis and optimization.

Theorem 1 ([5]). Strong equivalence of programs subsumes functional equivalence.

Theorem 2 ([14]). Strong equivalence of programs is decidable in time O(n7).

In section 5 we present a more efficient algorithm which checks strong equivalence of pro-
grams in time O(n6). Then we show how to adapt the equivalence checking procedure for
computing the most general unifier of programs in polynomial time. It is remarkable that
unification of program is performed by means of anti-unification, the dual operation on substi-
tutions.

38

Is it possible to unify sequential programs? T.A. Novikova, V.A. Zakharov

4 Reduced templates and reduced generalization

Before getting down to the description of equivalence checking and unification algorithms for
programs we need to make some remarks concerning the complexity issues of our approach
to these problems. Both algorithms are iterative procedures using only two operations on
substitutions — composition θ1θ2 and anti-unification glb(θ1, θ2). When terms in substitutions
are presented by trees then the size of glb(θ1, θ2) does not exceed the sizes of θ1 and θ2, but the
size of θ1θ2 may be proportional to the product of the sizes of θ1 and θ2. On the other hand,
when terms are presented by directed acyclic graphs the size of θ1θ2 does not exceed the sum
of the sizes of θ1 and θ2, but as it was shown in [3] the size of glb(θ1, θ2) may be proportional
to the product of the sizes of θ1 and θ2. Since these operations interleave along an iterative
computation, the size of resulting substitution may grow exponentially with the number of
steps. To avoid the size explosion effect we introduce a new operation on substitutions — a
reduced anti-unification — which possesses the same nice properties as usual anti-unification,
but yields a far more succinct result.

In what follows we will deal with two types of object variables — the sets of basic variables
X ,X ′,X ′′ that are used in programs and the set of auxiliary (”dummy”) variables Y that appear
in substitutions when anti-unification is computed. Proper names of ”dummy” variables are
not important, and when considering substitutions from Subst[X ,X ∪ Y] we write θ1 = θ2 to
indicate that one of these substitutions can be obtained from the other by renaming variables
from Y.

Let θ1, θ2 be substitutions from Subst[X ,X ∪ Y]. Then θ1 is a reduced template of θ2
if θ1 � θ2 and for every y, y ∈ V arθ1 ∩ Y, there exists x, x ∈ X , such that θ1(x) =
y. A reduced template θ1 of a substitution θ2 is called its most specific reduction (θ1 =
msr(θ2) in symbols) if θ � θ1 holds for every reduced template θ of θ2. For example, if
θ2 = {x1/f(g(y), x2), x2/g(y), x3/f(y, x1)}, where x1, x2 ∈ X and y ∈ Y, then msr(θ2) =
{x1/f(y′, x2), x2/y

′, x3/y
′′}. Some properties of most specific reductions are presented in the

propositions below.

Proposition 1. Let θ1, θ2 be substitutions from Subst[X ,X ∪ Y]. Then

θ1 � θ2 ⇒ msr(θ1) � msr(θ2) .

Proof. If θ1 � θ2 then every reduced template of θ1 is also a reduced template of θ2. Hence,
msr(θ1) is a template of msr(θ2).

The following proposition shows how to build the most specific reduction of a substitution
θ by ”cutting off” some subterms that occur in the bindings of θ.

Proposition 2. Let θ and θ′ be a pair of substitutions from Subst[X ,X ∪ Y], and t′ =
f(. . . , y, . . .) be a term of height 1 such that

• θ = θ′{y′/t′} holds for a variable y′ from Y and ,

• y ∈ Y, and θ(x) 6= y for every variable x from X ,

• for every binding x/t from θ′ a term t does not include t′ as a subterm.

Then msr(θ) = msr(θ′).

39

Is it possible to unify sequential programs? T.A. Novikova, V.A. Zakharov

Proof. Suppose the contrary. As it follows from Proposition 1, msr(θ) 6= msr(θ′) iff msr(θ) is
not a template of θ′. The latter means that msr(θ) has at least one binding x/t such that a
term t includes t′ as a subterm. Hence, y ∈ V armsr(θ). On the other hand, since θ(x) 6= y for
every variable x, the same non-equality holds for msr(θ). Thus, we arrive at the contradiction:
y ∈ V armsr(θ), but there is no any variable x such msr(θ)(x) = y.

Proposition 3. Let θ ∈ Subst[X ,X ∪ Y] and η ∈ Subst[X ,X]. Then

msr(ηθ) ∼ msr(η msr(θ)) .

Proof. To build the most specific reductions we use Proposition 2. The most specific reduction
of a substitution from Subst[X ,X ∪ Y] can be obtained by ”cutting off” one by one all those
subterms t′ that occur in the bindings of this substitution and satisfy the requirements of
Proposition 1. Thus, we can build msr(η msr(θ)) by ”cutting off” at first the subterms that
occur in the bindings of θ until η msr(θ) is obtained. Then the same ”cutting” procedure is
applied to η msr(θ) until msr(η msr(θ)) is formed. The key point here is that η ∈ Subst[X ,X].
Therefore, every term t′ = f(. . . , y, . . .) which satisfies the requirements of Proposition 2 in the
context of substitution θ also satisfies these requirements in the context of substitution ηθ.

Proposition 4. Let θ ∈ Subst[X ,X ∪ Y] and A,B be atoms from Atom[X]. Then

Aθ = Bθ ⇐⇒ A msr(θ) = B msr(θ)

Proof. It is easy to see that A msr(θ) = B msr(θ) implies Aθ = Bθ. On the other hand,
Aθ = Bθ means that θ is a unifier of A and B. Therefore, as it follows from the results of
[8], A and B has the most general unifier η = {xi1/t1, . . . , xik/tk} which is an idempotent
substitution such that V arη ∩ {xi1 , . . . , xik} = ∅. Let V arη = {xj1 , . . . , xjm}. Consider a
renaming substitution λ = {xj1/y1, . . . , xjm/ym}. Since η ∼ ηλ, the substitution η′ = ηλ is
both a reduced substitution and the most general unifier of A and B. The latter means that
Aη′ = Bη′ and θ = η′ρ for some substitution ρ. Hence, η′ is a reduced template of θ. But in
this case, by the definition of the most specific reduction, msr(θ) = η′ρ′ for some substitution
ρ′. Therefore, Aη′ = Bη′ implies A msr(θ) = B msr(θ).

The most specific common reduced template of a pair of substitutions θ1, θ2 from Subst[X ,X∪
Y] is a substitution θ1tθ2 = msr(glb(θ1, θ2)). The operation of computing θ1tθ2 will be called
a reduced anti-unification. For example, if θ1 = {x1/f(g(x2), h(x1)), x2/g(x2), x3/h(x1)} and
θ2 = {x1/f(g(x1), g(y2)), x2/g(x1), x3/g(y2)} then
glb(θ1, θ2) = {x1/f(g(y′1), y′2), x2/g(y′1), x3/y

′
2} and

θ1 t θ2 = {x1/f(y′′1 , y
′
2), x2/y

′′
1 , x3/y

′
2}.

Some important properties of reduced anti-unification are presented in the propositions
below. These properties are crucial for proving Theorems 3 and 4.

Proposition 5. Let θ1, θ2 be substitutions from Subst[X ,X ∪ Y]. Then

θ1 t θ2 ∼ msr(θ1) tmsr(θ2) .

Proof. Since msr(θ1) � θ1 and msr(θ2) � θ2, we have glb(msr(θ1),msr(θ2)) � glb(θ1, θ2). By
Proposition 1, the latter implies msr(θ1) tmsr(θ2) � θ1 t θ2.

It can be also shown that every reduced template of glb(θ1, θ2) is a reduced template of
glb(msr(θ1),msr(θ2)) as well. Consider an arbitrary reduced template η of glb(θ1, θ2). Then η

40

Is it possible to unify sequential programs? T.A. Novikova, V.A. Zakharov

is also a reduced template of θ1 and θ2. Since η is a reduced substitution, we have η � msr(θ1)
and η � msr(θ2). Therefore, η � glb(msr(θ1),msr(θ2)).

Thus, we arrive at the conclusion that the most specific reduction of glb(θ1, θ2) is a reduced
template of glb(msr(θ1),msr(θ2)). Hence, θ1 t θ2 � msr(θ1) tmsr(θ2).

Proposition 6. Let θ1, θ2 be a pair of substitutions from Subst[X ,X∪Y], and η be a substitution
from Subst[X ,X]. Then ηθ1 t ηθ2 ∼ msr(η(θ1 t θ2))

Proof. It is easy to check (see [4, 10]) that composition of substitutions is left-distributive over
anti-unification. Therefore, by Propositions 3, we have

ηθ1tηθ2 = msr(glb(ηθ1, ηθ2)) ∼ msr(η glb(θ1, θ2)) ∼ msr(η msr(glb(θ1, θ2))) = msr(η(θ1tθ2)) .

Proposition 7. Let θ1, θ2 be a pair of substitutions from Subst[X ,X ∪ Y], and A,B be atoms
from Atom[X]. Then

Aθ1 = Bθ1 ∧Aθ2 = Bθ2 ⇐⇒ A(θ1 t θ2) = B(θ1 t θ2).

Proof. By Proposition 4, it is sufficient to show

Aθ1 = Bθ1 ∧Aθ2 = Bθ2 ⇐⇒ A glb(θ1, θ2) = B glb(θ1, θ2) .

On the one hand, if Aθ1 = Bθ1 and Aθ2 = Bθ2 then atoms A and B are unifiable and
they have the most general unifier µ such that µ � θ1 and µ � θ2. Hence, µ � glb(θ1, θ2), and
glb(θ1, θ2) is a unifier of A and B. On the other hand, if A glb(θ1, θ2) = B glb(θ1, θ2) then, by
definition of glb, both substitutions θ1 and θ2 are unifiers of A and B.

Proposition 8. If substitutions in Subst[X ,X ∪ Y] are presented by directed acyclic graphs
then the substitution θ1t θ2 can be computed in time linear of the sizes of θ1 and θ2. Moreover,
if θ1 and θ1 t θ2 have the same size then θ1 = θ1 t θ2.

5 Equivalence checking of sequential programs

Let π′(X) = 〈X , L′, start′, stop′, ϕ′, ψ′〉 and π′′(X) = 〈X , L′′, start′′, stop′′, ϕ′′, ψ′′〉 be a pair
of programs over a set of basic variables X = {x1, x2, . . . , xn}. To check their strong equivalence
we introduce a pair of disjoint set of variables X ′ = {x′1, x′2, . . . , x′n} and X ′′ = {x′′1 , x′′2 , . . . , x′′n},
and rename the variables in π′(X) and π′′(X) accordingly to deal with programs π′(X ′) and
π′′(X ′′) with disjoint set of basic variables. The inverse transformation can be achieved with
the help of the substitution λrename = {x′1/x1, x′2/x2, . . . , x′n/xn, x′′1/x1, x′′2/x2, . . . , x′′n/xn}.

Both equivalence checking and unification algorithms operate on the Graph of Compatible
Paths (GCP) Γ(π′, π′′) of the programs π′(X ′) and π′′(X ′′). The nodes of this graph are pairs of
locations (`′, `′′) ∈ L′×L′′. Each node (`′, `′′) is marked with the pair of atoms (A`′ , A`′′). The
arcs of Γ(π′, π′′) are labeled with substitutions from Subst[X ′ ∪ X ′′,X ′ ∪ X ′′]. GCP Γ(π′, π′′)
is the minimal graph of this kind which complies with the following requirements:

1. Γ(π′, π′′) includes the node (start′, start′′);

2. if Γ(π′, π′′) includes a node (`′1, `
′′
1) and for some σ, σ ∈ {0, 1}, the programs admit

transitions `′1
σ,η′−→ `′2 and `′′1

σ,η′′−→ `′′2 such that at least one of the exit locations stop′ and
stop′′ is reachable by some trace either from `′2 or from `′′2 then Γ(π′, π′′) includes the
node (`′2, `

′′
2) and the arc from (`′1, `

′′
1) to (`′2, `

′′
2) labeled with the substitution η = η′∪η′′.

41

Is it possible to unify sequential programs? T.A. Novikova, V.A. Zakharov

Given a node u and an arc e, we denote by In(u) the set of all arcs incoming to u and by ηe
the substitution assigned to e.

Let U = {u0, u1, . . . uN} be a set of nodes of GCP Γ(π′, π′′) such that u0 = (start′, start′′).
Then we associate with every node u an unknown substitution (substitution variable) Θu which
can take values from the set Subst[X ′ ∪ X ′′,X ∪ Y]. For every node u we define a function Φu
of the substitution variables Θu, u ∈ U , such that

Φu(Θu0
,Θu1

, . . . ,ΘuN
) = Θu t

⊔
e=〈v,u〉∈In(u)

ηeΘv

and consider an operator Φ(Θu0
,Θu1

, . . . ,ΘuN
) = 〈λrename t Φu0

,Φu1
, . . . ,ΦuN

〉. Since every
function Φu is monotonic w.r.t. �, and the quasi-ordered set of substitutions (Subst[X ′∪X ′′,X∪
Y],�) satisfies the descending chain condition, the operator Φ, by Kleene fixed-point theorem,
has the greatest fixed point gfp(Φ). The greatest fixed point can be computed by means of
a usual iterative procedure: take −→τ = 〈τ, τ, . . . , τ〉 for an over-approximation of gfp(Φ) and
apply Φ to −→τ iteratively until Φk(−→τ) = Φk+1(−→τ).

Theorem 3. Suppose that the substitutions in programs π′(X) and π′′(X) are presented by
directed acyclic graphs and the size of each program does not exceed n. Then

1. gfp(Φ) = 〈θ̂u0
, θ̂u1

, . . . , θ̂uN
〉 is computable in time O(n6).

2. Programs π′(X) and π′′(X) are strongly equivalent iff the equality A`′ θ̂u = A`′′ θ̂u holds
for every node u = (`′, `′′) in GCP Γ(π′, π′′).

Proof. 1) Consider the sequence of tuples of substitutions computed by the iterative procedure

Φk(−→τ) = 〈θku0
, θku1

, . . . , θkuN
〉, k ≥ 1 ,

where θk+1
u = θku t

⊔
e=〈v,u〉∈In(u)

ηeθ
k
v for every node u. The number of nodes N + 1 in GCP

Γ(π′, π′′) does not exceed n2. As it follows from Proposition 8, the size of θk+1
u may be greater

than the size of θku only when θku = τ . Therefore, the maximal size of a substitutions θku in every
tuple Φk(−→τ) does not exceed n2, and a tuple Φk(−→τ) does not contain the virtual substitution τ
when k ≥ n2. If a tuple Φk(−→τ) does not contain τ then, by Proposition 8, either the total size
of all substitutions in Φk+1(−→τ) drops at least by 1, or Φk(−→τ) = Φk+1(−→τ) = gfp(Φ). Hence, the
iterative procedure makes n4 steps at the most. Since reduced anti-unification is computable
in linear time of the size of its arguments, the iterative procedure completes the computation
of gfp(Ψ) in time O(n6).

2) Consider an arbitrary finite path β = e1, e2, . . . , em in GCP Γ(π′, π′′) which leads from
the node u0 = (start′, start′′) to a node u = (`′, `′′). Denote by ηβ the composition of
substitutions ηem · · · ηe2ηe1λrename assigned to the arcs of this path. Given an arbitrary node
u in GCP Γ(π′, π′′) denote by Path(u) the set of all such paths that lead to this node from
the initial node u0. Then, by definitions of GCP Γ(π′, π′′) and strong equivalence of sequential
programs, the programs π′ and π′′ are strongly equivalent iff the following assertion is valid:
A`′ηβ = A`′′ηβ holds for every node u = (`′, `′′) in Γ(π′, π′′) and every path β in the set Path(u).
As it follows from Proposition 7, this assertion is valid iff A`′

⊔
β∈Path(u)

ηβ = A`′′
⊔

β∈Path(u)
ηβ

holds for every node u = (`′, `′′) in Γ(π′, π′′). Hence, to check strong equivalence of π′ and π′′

it is sufficient to compute for every node u = (`′, `′′) a substitution θu =
⊔

β∈Path(u)
ηβ and check

if A`′θu = A`′′θu holds.

42

Is it possible to unify sequential programs? T.A. Novikova, V.A. Zakharov

Propositions 5 and 6 guarantee that for every node u the substitutions θu defined above
satisfies an equality θu =

⊔
e=〈v,u〉∈In(u)

ηeθv. Thus, the tuple of substitutions 〈θu0
, θu1

, . . . , θuN
〉

is a fixed point of the operator Φ.

Finally, it should be noticed that for every node u, u ∈ U, and every path β, β ∈ Path(u),

the greatest fixed point gfp(Φ) = 〈θ̂u0
, θ̂u1

, . . . , θ̂uN
〉 satisfies inequality θ̂u � ηβ . Therefore, the

tuple 〈θu0
, θu1

, . . . , θuN
〉 is the greatest fixed point of the operator Φ. This conclusion completes

the proof of the second claim of the theorem.

6 Unification of sequential programs

Now we define a unification algorithm Unif for programs π′(X ′) and π′′(X ′′) with disjoint set
of basic variables. To this end we modify the iterative procedure used for the computation of
gfp(Φ).

The unification algorithm generates a sequence of substitutions ρ0 = ε, ρ1, . . . , ρn from
the set Subst[X ′ ∪ X ′′,X ′ ∪ X ′′]. At every stage i, i ≥ 1, to build the next substitution ρi
the algorithm Unif iteratively associates with every node u of GCP Γ(π′, π′′) a pair (θu, Su),
where θu is a substitution from Subst[X ′ ∪ X ′′,X ′ ∪ X ′′ ∪ Y], and Su is a set of substitutions
from Subst[X ′ ∪ X ′′,X ′ ∪ X ′′].

At the beginning of the stage i the node u0 = (start′, start′′) is associated initially with
the pair (ρi, {ρi}). Any other node is associated with the pair (τ, ∅), where τ is the greatest
element (virtual substitution) in the quasi-lattice of substitutions.

Then the algorithm iterates as follows. For every arc e which is labeled with a substitution
ηe and leads from a node v = (`′1, `

′′
1) to a node u = (`′2, `

′′
2) the algorithm Unif computes the

substitution µ = θu t ηeθv. If θu 6∼ µ then the algorithm reassigns the substitution µ to the
node u instead of θu and adds the set of substitutions {ηeη : η ∈ Sv} to the set Su. As soon
as the equality θu ∼ θu t ηeθv holds for every arc e = 〈v, u〉 in GCP Γ(π′, π′′), the algorithm
Unif completes the stage i.

At the completion of the stage i the algorithm checks whether the equality A`′θu = A`′′θu
holds for every node u = (`′, `′′) of GCP Γ(π′, π′′). If this is the case then the algorithm
Unif terminates and outputs the pair of substitution (ρi|X ′ , ρi|X ′′) for the result. Otherwise it
computes the most general unifier

ν = mgu(
⋃

u=(`′,`′′)∈V

⋃
η∈Su

{(A`′η,A`′′η)}).

If such the unifier ν exists then the algorithm generates the next substitution ρi+1 = ρiν and
proceeds to the next stage i + 1; otherwise it terminates and declares the programs under
consideration non-unifiable.

To show the correctness of Unif we use two lemmas.

Lemma 1. Let H = H1 ∪H2 be a set of pairs of atoms. Then

mgu(H) = mgu({(A′mgu(H1), A′′mgu(H1)) : (A′, A′′) ∈ H2}) .

Lemma 2. Let H be the set of all pairs of atoms (A`′ηβ , A`′′ηβ) such that u = (`′, `′′) is a
node in Γ(π′, π′′) and β is a path in the set Path(u). Then mgu(H) is the most general unifier
of programs π′(X ′) and π′′(X ′′) w.r.t. the strong equivalence.

43

Is it possible to unify sequential programs? T.A. Novikova, V.A. Zakharov

Theorem 4. If programs π′(X ′) and π′′(X ′′) are unifiable then the algorithm Unif eventually
terminates at some stage m and the output substitution ρm is the most general unifier of these
programs w.r.t. strong equivalence. Otherwise Unif terminates and correctly detects that these
programs are not unifiable.

Proof. The algorithm Unif terminates, since every time when a unifier ν is computed at the
end of a stage i the number of variables in the set V arρiν becomes less than that in the set
V arρi . Therefore, the maximal number of stages in a computation of Unif does not exceed
the cardinality of the set X ′ ∪ X ′′.

It should be noticed that for every stage i and for every node u a set of substitutions Su
computed at the end of the stage i by the algorithm Unif is a subset of the set {ηβρi : β ∈
Path(u)}. The correctness of the algorithm Unif follows from this consideration by Lemmas 1
and 2.

A straightforward variant of the program unification algorithm Unif presented above is
not optimal: at every stage of its computation the number of substitutions in the sets Su may
grow exponentially of the size of programs π′(X ′) and π′′(X ′′). To make this algorithm more
efficient we thoroughly inspected the sets Su associated with the nodes of GCP Γ(π′, π′′) and
found out that these sets can be reduced substantially. As the result we arrive at the more
efficient modification of the algorithm Unif which unifies sequential programs in time O(n11).
We believe that even more considerable improvement is possible yet, and this is a topic of our
further research.

7 Conclusion

Unification problems for sequential programs can be studied in more general settings. For
example, it is reasonable to consider the case when substitutions are applied not only to the
input variables for their initialization but to the output ones for modification of computing
results. Thus, it is possible to introduced an operation of post-processing a program π by a
substitution θ, and say that programs π1(X ′) and π2(X ′′) are input-output unifiable iff their
exist two pairs of substitutions (θ1, θ2) and (η1, η2) such that the variants of these programs
whose input data are pre-processed η1 and η2 and output data are preprocessed by θ1 and θ2
are equivalent. We believe that the program unification algorithm Unif presented above can
be extended to manage this new setting of unification problem for sequential programs.

References

[1] Baader F., Snyder W. Unification theory. In J.A. Robinson and A. Voronkov, editors, Handbook
of Automated Reasoning, 2001, volume 1, p. 447-533.

[2] Bulychev P., Minea M. An evaluation of duplicate code detection using anti-unification. Proceedings
of the 3rd Int. Workshop on Software Clones, 2009, p. 22-27.

[3] Bulychev P., Kostylev E, Zakharov V. Anti-unification algorithms and their applications in pro-
gram analysis. Lecture Notes in Computer Science, 2009, v. 5947.

[4] Eder E. Properties of substitutions and unifications. Journal of Symbolic Computations, v. 1, 1985,
p. 31–46.

[5] Itkin V.E. The logic-termal equivalence of programs. Cybernetics. 1972, N 1, p. 5-27 (in Russian).

[6] Itkin V.E., Zwinogrodski Z. On program schemata equivalence. Journal of Computer and System
Science. 1972, v.6, N 1, p. 88-101.

44

Is it possible to unify sequential programs? T.A. Novikova, V.A. Zakharov

[7] Luckham D.C., Park D.M., Paterson M.S., On formalized computer programs, Journal of Com-
puter and System Science. 1970, v.4, N 3, p. 220-249.

[8] Manna Z, Waldinger R. Deductive synthesis of the unification algorithm. Science of Computer
Programming. 1981, v. 1, N 1-2, p. 5-48.

[9] Oancea C.E., So C., Watt S.M. Generalization in Maple. Maple Conference, 2005, p. 277–382.

[10] Palamidessi C. Algebraic properties of idempotent substitutions. Lecture Notes in Computer Sci-
ence, v. 443, 1990, p. 386–399.

[11] Paterson M.S., Wegman M.N. Linear unification. The Journal of Computer and System Science,
v. 16, N 2, 1978, p. 158–167.

[12] Plotkin G.D. A note on inductive generalization. Machine Intelligence, 1970, v. 5, N 1, 1970,
p. 153–163.

[13] Reynolds J.C. Transformational systems and the algebraic structure of atomic formulas. Machine
Intelligence, v.5, N 1, 1970, p. 135–151.

[14] Sabelfeld V.K. The logic-termal equivalence is polynomial-time decidable. Information Processing
Letters. 1980, v. 10, N 2, p. 57-62.

[15] Sorensen M.H., Gluck. R. An algorithm of generalization in positive supercompilation. Proceedings
of the 1995 International Symposium on Logic Programming, MIT Press, 1995, p. 465–479.

[16] Watt S.M. Algebraic generalization. ACM SIGSAM Bulletin, v. 39, N 3, 2005, p. 93–94.

45

	Introduction
	Preliminaries.
	A model of imperative sequential programs
	Reduced templates and reduced generalization
	Equivalence checking of sequential programs
	Unification of sequential programs
	Conclusion

