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Abstract 

As the demand for digital delivery of construction projects in the Architectural 

Engineering and Construction (AEC) industry continues to increase, the importance of 

worksite inspection and supervision is emphasized. Digital twin modeling of construction 

processes can reflect real-time site conditions, aiding refined management and project 

delivery. This paper explores the task of 3D layout reconstruction of interior construction 

sites through inspection by employing a portable 360-degree panoramic camera. The 

method uses visual simultaneous localization and Mapping (vSLAM) technology to 

precisely estimate camera poses during inspections, generating a motion trajectory and 

selecting key panoramic frames through an optimal capture point searching algorithm. 

Before reconstruction, the system integrates Inertial Measurement Unit (IMU) data to 

determine positional relationships between panoramic camera viewpoints, aligning 

multiple panoramic images into a unified coordinate system for accurate spatial 

reconstruction. Three-dimensional indoor layouts are reconstructed from panoramic 

images using a deep learning-based algorithm to automatically detect vertices through 

panoramic geometry calculations from a single panorama. An experiment with the 

existing floor plan is conducted to demonstrate the validity of the proposed method. This 

research introduces a novel approach that enhances the real-time capabilities and 

automation of spatial layout modeling for construction sites, laying the groundwork for 

intelligent inspections and holding significant engineering potential for rapid spatial 

layout recovery and object space mapping in future applications. 
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1 Introduction 

Digital delivery in civil and infrastructure projects is vital for ensuring project success, quality 

assurance, owner satisfaction, and long-term operations and maintenance (Guo et al. 2017). A 

fundamental concept of the digital delivery model is the transition from two-dimensional to three-

dimensional management frameworks, enabling more comprehensive and dynamic oversight of project 

processes. The digital model of existing construction scenes generated through 3D reconstruction can 

visually demonstrate the differences between the construction site conditions and the design model, 

enabling project managers to assess conditions efficiently, make informed decisions, and conduct post-

project verification and documentation, serving it as a critical technology in the development of an 

effective project delivery management system. 

3D layout reconstruction extracts object profiles, including dimensions, positions, and range data, 

which is crucial for creating digital twins with detailed geometrical information and enabling human 

interaction and predictive analysis (Lu et al. 2024). Data for 3D layout reconstruction can be obtained 

using structured light sensors, laser scanners, X-ray scanners, or imaging devices (Verykokou and 

Ioannidis 2023). In recent years, digital cameras have become a preferred choice due to their quality, 

efficiency, and cost-effectiveness. Thus, image-based 3D layout reconstruction techniques have gained 

increased attention from both theoretical and practical perspectives in the field of construction 

engineering and management. 

Current mainstream methods for 3D reconstruction of indoor layouts fall into two categories. The 

first method involves using multiple consecutive images with Structure from Motion (SfM) (Ullman 

1979) or Simultaneous Localization and Mapping (SLAM) (Durrant-Whyte and Bailey 2006) 

techniques for depth estimation, resulting in a sparse point cloud model. However, in indoor 

environments with limited texture and features, image-based 3D reconstruction requires capturing a 

large number of images from various angles, leading to time-consuming data processing and insufficient 

model accuracy. The second method employs a single panoramic image to estimate depth or directly 

infer layout parameters for indoor reconstruction, which is more efficient in data acquisition and 

processing, providing higher accuracy specifically for layout reconstruction of interior space.  

This study examines the digital delivery of 3D construction modeling through site inspection 

following the sequence of inspection trajectory mapping, capture point determination, and 3D layout 

reconstruction, as shown in Figure 1. Panoramic video serves as the data source to develop a 3D digital 

site layout information model. The method employs a portable 360-degree panoramic camera to capture 

indoor panoramic images and addresses two main challenges in the modeling process: (1) To determine 

the optimal panoramic capture points during dynamic inspections, an OpenVSLAM-based path 

trajectory mapping and capture point retrieval algorithm is proposed; (2) To address the issue of missing 

the actual size of the room layout model, the HorizonNet algorithm is applied for single panoramic 

image-based 3D layout reconstruction of interior spaces, enabling the recovery of accurate room 

boundary dimensions. The following sections will focus on related work, proposed methods, 

experimental analysis, and conclusions regarding 3D layout reconstruction of interior construction 

based on panoramic site inspection. 
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Figure 1: Framework of panoramic image-based 3D layout reconstruction for interior construction space 

2 Related Work 

2.1 Vision-based 3D Reconstruction 

The generation of vision-based 3D reconstruction can be achieved using active or passive methods, 

distinguished by how depth information is extracted from images. Active methods use RGB-Depth 

cameras directly to acquire depth data, with Structured Light (Geng 2011) and Time-of-Flight (ToF) 

(Cui et al. 2010) being common techniques. In contrast, passive methods rely on environmental 

reflections, such as natural light, to estimate geometric data and depth, which is then used to generate a 

dense point cloud. Due to limitations of active methods, including environmental and equipment 

constraints, recent research has increasingly focused on passive vision approaches. Generally, the 

passive methods can be categorized based on the number of cameras: monocular, binocular, and multi-

view systems (Khan et al. 2020). 

Monocular vision uses a single camera for 3D reconstruction and is a simple, flexible, and cost-

effective method with fast processing times. Its versatility makes it widely applicable in areas such as 

3D object measurement and site inspection. Monocular vision extracts features from images like 

brightness, depth, texture, contours, geometric shapes, and key points. The data processing includes 

feature extraction, matching, camera motion estimation, bundle adjustment, and depth recovery (Lu et 

al. 2024). The first four steps form the Structure from Motion (SfM) process, which estimates camera 

movement and generates sparse point clouds. This sparse reconstruction is then enhanced with Multi-

View Stereo (MVS) to achieve spatial consistency, cluster points, and fill in missing data, resulting in 

a dense point cloud (Furukawa and Hernández 2015). However, the narrow field of view of a standard 

monocular camera requires capturing multiple images to obtain information about the entire scene, 

making it challenging to cover all angles. Additionally, since feature point matching is necessary, the 

images used for reconstruction must have sufficient overlap, increasing the data acquisition complexity. 

2.2 Single Panoramic Image-Based 3D Layout Reconstruction 

Single-image reconstruction simplifies the image-based 3D reconstruction problem by relying on a 

single input image rather than multiple images, providing parallax for depth estimation. This approach 

benefits from easy data acquisition and a simplified model. With the growing prevalence of 360-degree 

cameras and panoramic techniques applications in engineering fields, layout reconstruction based on 
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panoramic images has become a popular research focus in computer vision (Cinnamon and Jahiu 2023). 

Single panoramic image-based 3D layout reconstruction methods are categorized into two main types: 

constraint-based and deep learning-based approaches. 

The constraint-based 3D layout reconstruction approach extracts structural features from images 

using geometric constraints to estimate 3D layout. These constraints draw from prior knowledge and 

include vanishing points, parallelism, coplanarity, orthogonality, and perspective relationships (Hoiem 

et al. 2007). Among these, the Manhattan world assumption is frequently applied in single-image 3D 

layout reconstruction algorithms. This assumption posits that most artificial environments align object 

lines and planes with one of the three axes of the Cartesian coordinate system (Coughlan and Yuille 

1999). Researchers have widely utilized this assumption for single-image 3D layout reconstruction, 

particularly in architectural applications, where it allows the segmentation of indoor scenes into floors, 

walls, and ceilings, thereby reconstructing the 3D model of the scene. Additionally, several scholars 

have expanded the Manhattan World model to improve its applicability in real-world environments, 

enhancing its accuracy and effectiveness in diverse scenarios (Straub et al. 2018). 

The deep learning-based 3D layout reconstruction approach constructs a target training dataset to 

map semantic labels to scene geometry using large volumes of data. This method effectively predicts a 

room's geometric structure through end-to-end learning techniques. LayoutNet (Zou et al. 2018) inputs 

a pre-processed Manhattan line map into a U-Net structure consisting of an encoder and decoder, 

generating a probability map for wall corners and boundaries between walls, floors, and ceilings, 

marking the first deep learning approach to perform 3D layout reconstruction as an end-to-end learning 

task. Dula-Net (Yang et al. 2019) introduces a deep learning framework for predicting Manhattan-world 

3D room layouts from a single RGB panorama, using a dual-branch architecture with equirectangular 

and perspective ceiling views connected through a feature fusion scheme to enhance accuracy in 2D-

floor plans and layout height predictions. LED2-Net (Wang et al. 2021) conducts a differentiable layout-

to-depth transformation, which reformulates 360-degree room layout estimation as a 360-degree depth 

estimation problem, enabling end-to-end training and improving model generalizability by integrating 

geometric information. HorizonNet (Sun et al. 2019) introduces a 1D representation for 3D room layout 

estimation from panoramic images, using end-to-end learning and Pano Stretch Data Augmentation to 

reduce computational complexity and accurately recover complex room shapes. Its advantages over 

existing methods include lower computational cost and more straightforward implementation, 

improving performance and generalizability across various indoor environments. 

2.3 3D Layout Reconstruction for Construction Management 

Information gathering on construction sites traditionally relies on manual inspections and record-

keeping, resulting in low levels of digitization and making it difficult for managers to grasp 

comprehensive site information effectively. The advent of 360-degree capture devices, which can 

document an entire scene in a single shot, has enabled the effective use of panoramic images for 

recording construction site conditions.  

Research has conducted a comprehensive review of 360° panoramic visualization technologies in 

the AEC industry, highlighting key applications and benefits for enhancing construction education, 

monitoring, visualization, and safety training (Shinde et al. 2023). Panoramic image-based 3D layout 

reconstruction has been applied in construction management scenarios, including automatic progress 

assessment of interior construction sites (Fang et al. 2023), detection of indoor functional elements like 

dome lights and outlets (Pintore et al. 2018), partial construction space reconstruction virtual reality 

applications (Feng et al. 2018). However, existing researches have focused on generating 3D models 

from panoramic images captured in stationary positions, with limited exploration of mobile technology 

for capturing panoramic images to reconstruct complete interior construction spaces. This paper 

explores 3D layout reconstruction of interior construction sites through mobile inspections using a 

portable 360-degree panoramic camera, ensuring minimal disruption to daily operations. 
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3 Methodology 

3.1 Inspection Trajectory Mapping 

This paper utilizes the OpenVSLAM (Sumikura et al. 2019) algorithm to analyze and process 

panoramic inspection videos to obtain inspection trajectories, recording the spatial positions and 

location information at each moment during the inspection process. As an indirect method that extracts 

ORB feature points from target scenes, OpenVSLAM operates through three modules: tracking, 

mapping, and global optimization. 

To obtain the position information of the inspection trajectory from camera to floor plan, an affine 

transformation is applied to associate the pixel coordinate system 𝐶𝑝  with the camera trajectory 

coordinate system 𝐶𝑡. This process involves fundamental operations, including scaling, rotation, and 

shearing. By abstracting these fundamental operations, we simplify the task of matching the path to the 

floor plan into an affine transformation process. Specifically, from the path generated by OpenVSLAM, 

three trajectory coordinates requiring relocation are recorded as ( 𝑥𝑖
𝑡 , 𝑦𝑖

𝑡 ). Given the existing 

construction floor plan, three reference points are selected on the plan and recorded as (𝑥𝑖
𝑝
, 𝑦𝑖

𝑝
). Next, 

the affine matrix 𝑀 calculates the pixel coordinates of the inspection trajectory points on the floor plan, 

as shown in Equation 1, where 𝑎 is the Linear Transformation Matrix and 𝑡 is the Translation Vector. 

Finally, the pixel coordinates of all trajectory points are plotted on the floor plan, illustrating the actual 

inspection path and trajectory within the plan. 
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(1) 

3.2 Capture Point Determination 

After mapping the inspection trajectory onto the floor plan, the system divides it into continuous 

capture points based on the building's layout. The target interior space is segmented into multiple 

rectangles, with each rectangle's center assumed to be the best capture point. The system calculates and 

calibrates the center coordinates for each segment. The optimal capture point is the one closest to the 

center of each rectangle, ensuring a comprehensive view of the interior space. 

The system then constructs a KD Tree using the camera's capture points along the trajectory for an 

efficient nearest neighbor search (Bentley 1975). The global optimal capture point search algorithm 

traverses the KD Tree, as shown in Equation (2), and identifies the closest capture point to each 

calibrated center based on the shortest distance. This method locates the point along the trajectory 

nearest the target space's center, ensuring the optimal viewpoint for capturing the panoramic image and 

extracting the corresponding video frame. 

 

( ) arg min ( , )
i

i
p P
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3.3 3D Layout Reconstruction 

Since the inspection recording process involves handheld shooting, the resulting panoramic images 

in the form of equirectangular projection contain large areas of occlusion (e.g., the body and recording 

device), leading to the loss of indoor layout corner points and boundary details. This section uses the 

Large Mask Inpainting (LaMa) (Suvorov et al. 2021) algorithm to remove occlusions and restore 

boundary information. Using the original RGB image and the mask image from the panoramic 

inspection video as inputs, the algorithm, based on Fourier Convolutions, processes the image by 

leveraging the global structure and contextual information to generate natural and coherent inpainting 

results. This method retrieves the complete background and restores the full boundary contours of the 

interior room space. 

After Recovering scene boundaries and corner points from indoor panoramic images, HorizonNet 

reconstructs the room layout into a point cloud format. The panoramic image captured by the camera is 

an equidistant rectangular image projected from a square relative to the camera's coordinate system. To 

ensure that the final layout aligns with the world coordinate system, the panoramic image must be re-

projected before being input into the HorizonNet neural network. The camera's pose is determined using 

its 6-axis IMU data and the Mahony algorithm. The py360convert tool then uses the Euler angles 

derived from the pose calculation to re-project the panoramic image into the world coordinate system. 

The image data processing based on HorizonNet can be divided into three stages: pre-processing, 

processing, and post-processing. In the pre-processing stage, the algorithm starts with panoramic 

images as input, where the data is aligned to ensure consistency under the equirectangular projection. 

This alignment helps simplify the process of detecting vertical wall boundaries, a critical step for 

accurately estimating the room layout. In the Processing stage, ResNet-50 is used to extract relevant 

multi-scale features. HorizonNet employs a 1D representation that predicts floor-wall, ceiling-wall, and 

wall-wall boundaries for each image column. A bidirectional LSTM processes these columns 

sequentially, capturing long-range dependencies and geometric patterns across the layout. In the Post-

processing stage, the predicted 1D boundaries are projected into 3D space using the assumption of a 

1.8-meter camera height for real-world scaling. HorizonNet enhances accuracy through Pano Stretch 

Data Augmentation, which generates diverse training samples. The final result is a detailed point cloud 

model that captures the room's geometric structure, suitable for both cuboid and non-cuboid layouts. 

The flowchart of 3D layout reconstruction for interior space is shown in Figure 2. 

 

 

Figure 2: Flowchart of HorizonNet 
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4 Experiment 

The proposed method was validated on a concrete Modular Integrated Construction (MiC) project 

during the final interior finishing phase. A handheld Insta360 One RS was used for inspection, recording 

an 87-second panoramic video. After equidistant cylindrical projection, the OpenVSLAM algorithm 

reconstructed the inspection trajectory, which was projected onto known construction blueprints using 

affine transformation, as shown in Figure 3. The trajectory was discretized into inspection points, and 

the KD-tree search identified the optimal points nearest to the center of each space, as shown in Figure 

4. Frames from these points were extracted for further image processing and layout reconstruction. 

 

 

Figure 3: Matching process of inspection path trajectory with the floor plan  

 

 

Figure 4: Determination of optimal capture point from inspection trajectory 

Before image processing, IMU data calibrated the camera’s pose to ensure that all panoramic images 

used for layout reconstruction had a unified orientation. This calibration step was essential for aligning 

the images correctly in 3D space. Using the LAMA algorithm for key frame occlusion removal, the 

process begins by generating a mask for the occluded regions in the original image. The original image 

and its corresponding mask are then input into the LAMA algorithm, which inpaints the occluded areas 

and restores corner points along the boundaries of the panoramic image, such as where the floor meets 

the walls. The steps for removing occlusions in panoramic images are shown in Figure 5. 
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Figure 5: Process of occlusion removal for panoramic image 

Our research employed HorizonNet to reconstruct the target room layouts from panoramic images. 

The model was trained on a computing system equipped with an Intel® Xeon® CPU E5-2683 v4 @ 

2.10GHz and two Nvidia GeForce RTX 3090 GPUs, running on the Ubuntu 20.04.06 operating system. 

The training dataset consisted of a total of 335 panoramic images collected from three different 

construction sites. Of these, 88 images contained occlusions, while 247 images were free from 

occlusions. The dataset encompassed various room types, including living rooms, dining rooms, 

bedrooms, restrooms, kitchens, and hallways. The dataset was partitioned into a training set (268 

images, 80%) and a testing set (67 images, 20%) to ensure robust model training and evaluation. The 

model was fine-tuned using pre-trained weights from the Structure3D model, with a learning rate of 

0.0003, a batch size of 16, and training conducted over 100 epochs. The fine-tuning process took 

approximately 2.5 hours to complete. To evaluate the performance of the trained model, we used two 

key metrics: 3D Intersection over Union (IoU) and Corner Error. The 3D IoU metric was employed to 

assess the overlap between the 3D room layout predicted by HorizonNet and the corresponding ground 

truth, achieving an IoU score of 77.2%. Additionally, the Corner Error, calculated as 0.82%, quantifies 

the Euclidean distance between the predicted and actual corner points of the room layout, normalized 

by the diagonal length of the image. These two metrics provide valuable insights into the model's 

accuracy and precision in predicting room layouts. 

The complete process of room layout reconstruction, including all the steps involved, is visually 

summarized in Figure 6. However, it is important to note that dynamic elements present on construction 

sites—such as moving objects, workers, or temporary structures—can significantly influence layout 

accuracy. These elements may cause occlusion of key layout features, such as corners, during the image 

capture process, thereby introducing inaccuracies in the reconstruction. To mitigate this issue, images 

with occluded areas larger than one-third of the image resolution should be excluded from the dataset, 

as they may lead to unreliable predictions and degrade model performance. This consideration is crucial 

for maintaining the integrity of the dataset and ensuring the quality of the room layout reconstruction. 
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Figure 6: The process of room layout reconstruction 

In HorizonNet, a camera height of 1.8 meters is assumed for projecting the predicted 2D layout 

boundaries (floor-wall and ceiling-wall) into a 3D space. This assumption allows for the accurate 

calculation of floor-to-ceiling distances and wall positions relative to the camera, facilitating realistic 

room reconstruction from panoramic image inputs. Following the 3D layout reconstruction, one 

boundary from each reconstructed layout was selected and compared with the as-designed floor plan. 

The average discrepancy between the two was approximately 0.3 meters, as depicted in Figure 7. 

However, the study is subject to two limitations regarding layout estimation and real-scale recovery. In 

terms of layout estimation, the average prediction accuracy is constrained by the limited number of 

panoramic images available from the construction site. Regarding real-scale recovery, measurement 

errors may arise from fluctuations in camera height (±5 cm) during inspections, which limit the 

precision of the 3D reconstruction. Future research could focus on augmenting panoramic image data 

through image stretching techniques. Additionally, the adoption of a fixed-height camera system may 

enhance the accuracy of future studies. 
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Figure 7: Size evaluation of proposed method for room layour reconstruction 

5 Conclusions 

This paper introduces a new strategy for 3D layout reconstruction of interior construction sites using 

a portable 360-degree panoramic camera. The three key contributions are inspection trajectory 

mapping, capture point determination, and 3D layout reconstruction. It addresses challenges in 

capturing optimal panoramic data through an OpenVSLAM-based path mapping and capture point 

retrieval algorithm. The KD-tree is applied to locate points along the trajectory nearest to the center of 

each target space, ensuring the best viewpoint for capturing panoramic images and extracting key video 

frames. Using these key images, HorizonNet reconstructs 3D layouts, achieving 77.2% 3D IoU and 

0.82% Corner Error, with a 0.3-meter boundary error compared to as-designed floor plans. This method 

serves as an alternative to stationary layout estimation, offering valuable insights into intelligent site 

inspections and precise spatial modeling.  

This research can stand out as a flexible tool for future construction site monitoring, enhancing 

accuracy and real-time capability in dynamic environments. By incorporating interior layout 

reconstruction with higher accuracy, construction professionals can improve both the efficiency and 

completeness of site inspections, ensuring more reliable data collection and spatial analysis throughout 

the construction process. 
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