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Abstract 
In this paper we consider two matrix equations that involve the weighted geometric 

mean. We use the fixed point theorem in the cone of positive definite matrices to prove 
the existence of a unique positive definite solution. In addition, we study the multi-step 
stationary iterative method for those equations and prove the corresponding convergence. 
A fidelity measure for quantum states based on the matrix geometric mean is introduced 
as an application of matrix equation. 

1 Introduction  
Let  𝑀!, 𝑏	Î	ℕ	,	be the algebra of  matrices over C  and  let  𝑃!  denote the cone of positive 

definite matrices in .  
For a real-valued function f and a Hermitian matrix the matrix f(A) is understood by means 

of the functional calculus.  
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Let A, B be positive definite matrices. The matrix geometric mean   𝐴#𝐵 = 𝐴"/$(𝐴%"/$𝐵𝐴%"/$)𝐴"/$  
was firstly defined by Pusz and Woronowicz [6]. It is the unique positive definite solution of the Riccati 
equation 𝑋𝐴%"𝑋 = 𝐵.  

The geometric mean plays an important role in the theory of operator means, operator inequalities 
and semidefinite programming. 

In [5] Lim studied the inverse means problem for the geometric mean and the contraharmonic mean. 
Using (1) Lim showed that for A £ B  the matrix equation 𝑋 = 𝐴 + 2𝐵𝑋%"𝐵  has a unique solution of 
the form 𝑋 = "

$
(𝐴 + 𝐴#(𝐴 + 4𝐵𝐴𝐴%"(𝐵)). In another paper [3], Lim and co-authors studied the non-

linear equation: 
𝑋 = 𝐵#(𝐴 + 𝑋) 

and showed that this equation has a unique positive definite solution	𝑋 = "
$
(𝐵 + 𝐵#(𝐵 + 4𝐴). 

Recently, Lee and co-authors [2] studied the following matrix equation  𝑋& = 𝐴 +𝑀'(𝑋#𝐵)𝑀 
 
They used the Thompson metric and Banach fixed point theorem to show that the equation has a 

unique positive definite solution. In [8] Zhai and Jin studied two non-linear matrix equations as follows: 

𝑋& = 𝐴 +1 𝑀(
'

)

(*"
(𝑋#𝐵)𝑀( 

and  

𝑋& = 𝐴 +1 𝑀(
'

+

(*"
(𝑋#𝐵)𝑀( +1 𝑀(

'
)

(*+,"
(𝑋%"#𝐵)𝑀( 

 
where 𝑝,𝑚, 𝑗 are positive integers such that 1≤ 𝑗 ≤ 𝑚, 𝐴, 𝐵 are positive definite matrices and 

𝑀((𝑖 = 1,2, …𝑚)  are nonsingular real matrices  
 
With the Riemannian metric where, for Hermitian 

matrix X, the set 𝑃! become a Riemannian manifold. It turns out that the geometric mean 𝐴#𝐵 is the 
midpoint of the geodesic curve 𝐴#-𝐵 = 𝐴"/$(𝐴%"/$𝐵𝐴%"/$)-𝐴"/$ ,   t Î[0,1]  that joins A and B. 

Motivated by works mentioned above, in this paper we consider a family of non-linear matrix 

equations: 

𝑋& = 𝐴 +1 𝑀(
'

)

(*"
(𝑋#-𝐵)𝑀( 

and  

𝑋& = 𝐴 +1 𝑀(
'

+

(*"
(𝑋#-𝐵)𝑀( +1 𝑀(

'
)

(*+,"
(𝑋%"#-𝐵)𝑀( 

 
where: 
-	𝑝,𝑚 are positive integers 
- 𝐴, 𝐵 are 𝑛	´	𝑛 positive definite matrices 
- 𝑀((𝑖 = 1,2,3, … , 𝑛) are 𝑛	´	𝑛 non-singular real matrices. 
We show that each of these equations has a unique positive definite solution (Theorem 2, Theorem 

5). We also study the multi-step stationary iterative method for those equations and prove the 
corresponding convergence (Theorem 3 and Theorem 6) 

Matsumoto’s fidelity can also be defined using the well-established notion of the matrix geometric 
mean. We examine Matsumoto’s fidelity through the lens of semidefinite programming to give simple 
proofs that it possesses many desirable properties for a similarity measure, including monotonicity 
under quantum channels, joint concavity, and unitary invariance. Finally, we provide a geometric 
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interpretation of this fidelity in terms of the Riemannian space of positive definite matrices, and show 
how this picture can be useful in understanding some of its peculiar properties. 

2  Some Matrix Equations Involving The Weighted Geometric 
Mean 

Definition 2.1. Let	𝑇: 𝑃! → 𝑃!  be a operator, we say that  𝑇  is increasing if 0	£		𝑥	£	𝑦 implies 
𝑇𝑥		£		𝑇𝑦.  

The following lemma is crucial for us to prove the main results in this paper. 

     Lemma 1. Let 𝑇: 𝑃! → 𝑃! be an increasing operator. Suppose that there exists  𝑟Î(0,1) such that 

 𝑇(𝑠𝑥) 	≥ 𝑠.	𝑇(𝑥),				𝑥 ∈ 𝑃!,			𝑠 ∈ (0,1) 
Then T has a unique fixed point  𝑥∗ ∈ 𝑃" 

    Theorem 2. Let 𝐴, 𝐵 ∈ 𝑃!, 𝑚 be positive integers greater than 2 and 	𝑝	 ≥ 1 Then for nonsingular 
matrices	𝑀", 𝑀", … ,𝑀) in 𝑀! the following matrix equation: 

(2)   𝑋& = 𝐴 +E 𝑀(
')

(*" (𝑋#-𝐵)𝑀( 

has a unique positive definite solution 𝑋∗ in 𝑃! 

    Proof: Consider the following function 

𝑇(𝑋) = F𝐴 +1 𝑀(
'

)

(*"
(𝑋#-𝐵)𝑀(G

!
"
 

If we show that the function T(X) is increasing and satisfies the condition of Lemma 1, then it has a 
unique fixed point 𝑋∗ in 𝑃!. And hence, the equation (8) has a unique positive definite solution 𝑋∗ in 
𝑃!. 

      Let 0 < 𝑋"	£	𝑋$ . According the monotonicity of the weighted geometric mean #- ,   we have 
𝑋"#-	𝐵£	𝑋$#-𝐵. Consequently, 

𝑀(
'(𝑋"#-𝐵)𝑀( 	£		𝑀(

'(𝑋$#-𝐵)𝑀(,				𝑖 = 1,2, … ,𝑚 

      Therefore, 

𝐴 +1 𝑀(
'

)

(*"
(𝑋"#-𝐵)𝑀(	£	𝐴 +1 𝑀(

'
)

(*"
(𝑋$#-𝐵)𝑀( 

Since 𝑝	 ≥ 	1, the function 𝑡"/& is operator monotone on	(0,∞). Then from the last inequality we 
have: 

𝑇(𝑋) = F𝐴 +1 𝑀(
'

)

(*"
(𝑋#-𝐵)𝑀(G

!
"
 

          	£	K𝐴 +E 𝑀(
')

(*" (𝑋#-𝐵)𝑀(L
!
" 
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= 𝑇(𝑋$) 

That means, the function T(X) is increasing. 

Now, let 𝑋 ∈ 𝑃!. For 𝑡 ∈ (0,1) and 𝑝 ≥ 1 there exists a constant 𝑟 ∈ (0,1) such that 𝑟£(1 − 𝑡)/𝑝  
or  𝑟𝑝 + 𝑡 ≥ 1. It is obvious that for any	𝑠 ∈ (0,1), we have 	(𝑠𝑋)#-	𝐵 = 𝑠"%-	𝑋#-𝐵. Consequently,   

𝑀(
'((𝑠𝑋)#-𝐵)𝑀( = 𝑠"%-		𝑀(

'(𝑋#-𝐵)𝑀(,				𝑖 = 1,2, … ,𝑚 

Since 𝑟𝑝 ≥ 1 − 𝑡, for 𝑠 ∈ (0,1), we have 𝑠.&	£		𝑠"%- < 1 ∈ (0,1) 

     Therefore,  

(3) 								𝐴 + 𝑠"%-E 𝑀(
')

(*" (𝑋#-𝐵)𝑀(	 	≥ 	 𝑠.&K	𝐴 +E 𝑀(
')

(*" (𝑋#-𝐵)𝑀(L 

On account of operator monotonicity of the function 𝑡"/&, from the last inequality we obtain 

(4)  𝑇(𝑠𝑋) = K𝐴 +E 𝑀(
')

(*" (𝑋#-𝐵)𝑀(L
!
" 

             	≥ 	 O𝑠.&K𝐴 +E 𝑀(
')

(*" (𝑋#-𝐵)𝑀(LP
!
" 

      = 𝑠.K𝐴 +E 𝑀(
')

(*" (𝑋#-𝐵)𝑀(L
!
" 	= 	 𝑠.𝑇(𝑋) 

Thus, the equation (8) has a unique positive definite solution 𝑋∗ in 𝑃!.  □ 

Now, let 	𝑋", 𝑋$, … , 𝑋)	Î	𝑃! be initial matrices in 𝑃!. Let us consider the multi-step stationary 
iterative method for the equation (8) 

(5)  𝑋2,)," = K𝐴 +E 𝑀(
')

(*" (𝑋2,(#-𝐵)𝑀(L
!
",			𝑙 = 0,1,2, … 

In the following theorem we show that the matrix sequence {𝑋3} generated by (5) converges. 

Theorem 3. For any 	𝑋", 𝑋$, … , 𝑋)	Î	𝑃!, the matrix sequence {𝑋3} generated by (5) converges to 
the unique positive definite solution 𝑋∗ of the equation (8) 

Proof . For matrices 	𝑋", 𝑋$, … , 𝑋)	and 𝑋∗, there exists 𝑎 ∈ (0,1) such that  

 (6)                   𝑎𝑋∗	£		𝑋( 	£		𝑎%"𝑋∗,  i=1,2,3....m 

The strategy of the proof is that we first show that for any 𝑏	Î	ℕ,	 

        (7)                    𝑎.#𝑋∗	£		𝑋3	£	𝑎%.
#𝑋∗, k=bm+i,  (i=1,2,3....m) 

for some	𝑟 ∈ (0,1), with	𝑟 ≥ "%-
&

 . Then, according to the obvious fact that lim
4→6

𝑎.# = lim
4→6

𝑎%.# =
1 and the Squeeze theorem in the normal cone 𝑃!, it implies that {𝑋3} converges to 𝑋∗. 

Now we prove (7) using the method of mathematical induction. For		𝑏 = 0, the inequality (7) 
reduces to the case of (6). Assume that (7) is true for b = q - 1 for some positive integer q, i.e., for k = 
(q - 1)m + i, (i=1,2,3,...,m), that is, 

 (8)                           𝑎.$%!𝑋∗	£		𝑋(8%")),( 	£	𝑎%.
$%!𝑋∗. 
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Mention that,  𝑋2,)," = 𝑇(𝑋(8%")),() . From the proof of Theorem 2, the map T(X) is increasing. 
Therefore, from (8) it implies that: 

    𝑇(𝑎.$%!𝑋∗	)£	𝑋8),( = 𝑇(	𝑋(8%")),()	£	𝑇(𝑎%.
$%!𝑋∗). 

From (4) we have: 

(9)  𝑇(𝑎.$%!𝑋∗	) 	≥ 𝑎.#𝑇(	𝑋∗) = 	𝑎.#𝑋∗. 

On the other hands, since	𝑎%.$%! ≥ 1 the inequality (3) is reversed, hence, (4) is also reversed. 
Again using the monotonicity of T(X) we have:  

         (10) 𝑇(𝑎.$%!𝑋∗	)	£		𝑎%.#𝑇(	𝑋∗) = 	𝑎%.#𝑋∗. 

From (9) and (10), it implies that  

𝑎.$%!𝑋∗	£		𝑋8),(	£		𝑎%.
#𝑋∗. 

Thus, (7) is true, and {𝑋3} converges to 𝑋∗. 
Definition 2.2: Suppose that 𝐷	Ì	𝐸, then 𝐷´𝐷	Ì	𝐸´𝐸. Let 𝑇:𝐷´𝐷	 → 	𝐸 be a operator, we say that 

T is mixed monotone if for any  	𝑥", 𝑥$, 𝑦", 𝑦$	Î	𝐷  with 	𝑥"	£		𝑥$, 𝑦" ≥ 𝑦$	Î	𝐷 
implies	𝑇(𝑥", 𝑦")	£		𝑇(𝑥$, 𝑦$). And 𝑥∗ is a fixed point of T if it satisfies 𝑥∗ = 𝑇(𝑥∗, 𝑥∗), 	𝑥∗Î𝐷 

Lemma 4: Let  𝑇: 𝑃!´	𝑃! → 𝑃! be a mixed monotone operator. Suppose that for any 0 < 𝑎 < 𝑏 <
1, there exists a constant b = b(𝑎, 𝑏)	Î	(0,1) such that 𝑇 O𝑡𝑥, "

-
𝑥P ≥ 𝑡:𝑇(𝑥, 𝑥),					𝑥Î𝑃!,				𝑡Î(0,1). 

Then T has a unique fixed point 𝑥∗ ∈ 𝑃! 

Theorem 5: Let 𝐴, 𝐵 ∈ 𝑃!  and 𝑀((𝑖 = 1,2, … , 𝑛)  be nonsingular matrices in  𝑀!  Let m be 
positive integers greater than 2, 𝑝	 ≥ 	1, and j be some integer between 1 and m. Then the nonlinear 
matrix equation 

(11)  𝑋& = 𝐴 +E 𝑀(
'+

(*" (𝑋#-𝐵)𝑀( +E 𝑀(
')

(*+," (𝑋%"#-𝐵)𝑀(  

has a unique positive definite solution 𝑋∗ in 𝑃!. 

Proof: Consider the following operator 

(12)      𝑇(𝑋, 𝑌) = O𝐴 +E 𝑀(
'+

(*" (𝑋#-𝐵)𝑀( +E 𝑀(
')

(*+," (𝑋%"#-𝐵)𝑀(P
!
" 

Obviously, 𝑇: 𝑃!´	𝑃! → 𝑃!. If we show that the operator T satisfies the condition of Lemma 4, then 
T has a unique fixed point 𝑋∗ ∈ 𝑃! . Therefore, the equation (11) has a unique positive definite 
solution	𝑋∗ ∈ 𝑃!. 

Firstly mention that according to the monotonicity of the weighted geometric mean, the function 
𝑇&(𝑋, 𝑌) is increasingly monotone in X and decreasingly monotone in Y. Therefore, 𝑇&(𝑋, 𝑌) is a 
mixed monotone map. For 𝑝 ≥ 1, the function 𝑡"/& is operator monotone on		(0,∞). Thus, the function 

𝑇(𝑋, 𝑌) = K𝑇&(𝑋, 𝑌)L
!
" is also mixed monotone. 

Secondly, for 𝑡	Î	(0,1) and 𝑝	 ≥ 	1 there exists a constant 𝑟	Î	(0,1) such that 𝑟£(1 − 𝑡)/𝑝  or 
𝑟𝑝 + 𝑡 ≥ 1. Let 𝑋 ∈ 𝑃!, on account of the operator monotonicity of the function 𝑡"/&, we have 
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(13)   𝑇(𝑠𝑋, 𝑠%"𝑋) = O𝐴 +E 𝑀(
'+

(*" K(𝑠𝑋)#-𝐵L𝑀( +E 𝑀(
')

(*+," ((𝑠%"𝑋)%"#-𝐵)𝑀(P
!
" 

                              = O𝐴 +E 𝑀(
'+

(*" K(𝑠𝑋)#-𝐵L𝑀( +E 𝑀(
')

(*+," ((𝑠𝑋%")#-𝐵)𝑀(P
!
" 

                                     	≥ F𝑠.& O𝐴 +E 𝑀(
'+

(*" K(𝑠𝑋)#-𝐵L𝑀( +E 𝑀(
')

(*+," ((𝑠𝑋%")#-𝐵)𝑀(PG
!
"
 

                             = 𝑠. O𝐴 +E 𝑀(
'+

(*" K(𝑠𝑋)#-𝐵L𝑀( +E 𝑀(
')

(*+," ((𝑠𝑋%")#-𝐵)𝑀(P
!
" 

= 𝑠.𝑇(𝑋, 𝑋) 

Thus, the equation (11) has a unique positive definite solution 𝑋∗ in 	𝑃! as the map T(X,Y) satisfies 
all hypotheses of Lemma 4. □ 

Similar to the case of (5) we may use the following multi-step stationary iterative method to find 
the solution of (11): 

(14) 𝑋2,)," = O𝐴 +E 𝑀(
'+

(*" (𝑋2,(#-𝐵)𝑀( +E 𝑀(
')

(*+," (𝑋2,(%"#-𝐵)𝑀(P
!
" , 𝑙	Îℕ 

where 	𝑋", 𝑋$, … , 𝑋)	Î𝑃! are initial matrices.  

The proof of the following theorem is similar to the one of  Theorem 3. 

Theorem 6. For any 	𝑋", 𝑋$, … , 𝑋)	Î	𝑃! , the matrix sequence 	
{𝑋3}  generated by (3) converges to the unique positive definite solution 	
𝑋∗ của phương trình (11). 

Proof: Since equation (11) has a unique positive definite solution 𝑋∗ , there exists a positive 
constant 0 < 𝑎 < 1 such that the initial matrices 	𝑋", 𝑋$, … , 𝑋)	Î	𝑃! satisfy 

(15)                   𝑎𝑋∗	£		𝑋( 	£		𝑎%"𝑋∗,  i=1,2,3,....,m 

We first show that for any𝑏	Î	ℕ, 

(16)                   𝑎.#𝑋∗	£		𝑋( 	£		𝑎%.
#𝑋∗k=bm+i ( i=1,2,3,....,m) 

For some 𝑡	Î	(0,1)		 with 	𝑟 ≥ "%-
&

  . Then, according to the obvious fact that 	

lim
4→6

𝑎.# = lim
4→6

𝑎%.# = 1  and the Squeeze theorem in the normal cone 𝑃!  it implies that {𝑋3} 
converges to 𝑋∗. 

Now we prove (16) using the method of mathematical induction. For b = 0, the inequality 
(16) reduces to the case of  (15). Assume that (16) is true for b=q-1, for some positive integer q 
i.e., for k=(q-1)m+i, (i=1,2,3,...,m) that is,                  

(17)                   𝑎.$%!𝑋∗	£		𝑋(8%")),( 	£		𝑎%.
$%!𝑋∗ 

Mention that, 𝑋8),( = 𝑇(𝑋(8%")),( , 𝑋(8%")),(). From the proof of Theorem 5, the map T is 
mixed monotone. Therefore, from (17) it implies that  
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𝑇K𝑎.$%!𝑋∗, 	𝑎%.$%!𝑋∗L£	𝑋8),( = 𝑇K𝑋(8%")),( , 𝑋(8%")),(L£𝑇K𝑎.
$%!𝑋∗, 	𝑎%.$%!𝑋∗L 

From (13) we have 

(18)  	𝑇K𝑎.$%!𝑋∗, 	𝑎%.$%!𝑋∗L		≥ 	𝑎.$𝑇(𝑋∗, 𝑋∗)	= 𝑎.$𝑋∗ 

On the other hands, since  the inequality (13) is reversed. Again using the mixed 
monotonicity of T we have 

(19)   𝑇K𝑎%.$%!𝑋∗, 	𝑎.$%!𝑋∗L	£		𝑎%.$𝑇(𝑋∗, 𝑋∗) = 𝑎%.$𝑋∗ 

From (18) and (19), it implies that  

    𝑎.$𝑋∗	£		𝑋8),( 	£		𝑎%.
$𝑋∗ 

Thus, (16) is true, and {𝑋3}	converges to 𝑋∗. □ 

3 Application 

Matsumoto fidelity after its introduction by Matsumoto in [12], which is defined as: 

(20)  𝐹;(𝜌, 𝜎) ≔ 𝑇𝑟(𝜌#𝜎),			𝜌#𝜎 = 𝜌"/$(𝜌"/$𝜎"/$𝜌"/$)𝜌"/$ 
for invertible quantum states 𝜌 and 𝜎 . The binary operation # is known as the matrix weighted 

geometric mean with 𝑡 = "
$
,  it is also the geometric mean. The matrix geometric mean has intricate 

connections to the geometry of quantum state space and also to quantum information theory. 
𝐹;(𝜌, 𝜎)		is the matrix equation involving the weighted geometric mean. 
Semidefinite programming is a well-behaved class of optimization problems which have seen 

countless applications in the study of quantum theory, including convex geometry, thermodynamics, 
computational complexity theory, cryptography, Bell non-locality, and entanglement, to just name a 
few. Fortunately, the Matsumoto fidelity can be formulated as a semidefinite program (abbreviated as 
SDP) which allows a convenient prescription for its calculation, and also provides a useful analytical 
definition with which many of its properties can be easily proven. 

3.1 Geometric interpretation 

The space of positive definite matrices can be pictured as a cone like the one shown in Figure 1 

1

1
qra
-- ³
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Figure 1: The space of positive semidefinite matrices 

The space of positive semidefinite matrices is presented pictorially as a cone with boundary, 
embedded into the ambient space of Hermitian 𝑛	´	𝑛 matrices. The positive definite matrices form the 
interior of the cone, whereas singular matrices form the boundary (because an infinitesmal perturbation 
can change a zero eigenvalue to negative, putting it outside the cone). The central axis represents scalar 
multiples of the identity, such as the maximally mixed state. The distance measure in Equation (20) 
defines geodesics (i.e. shortest-length paths) within this conical space. These geodesics always curve 
toward lower trace (leftward in the picture). The Matsumoto fidelity, denoted by 𝐹; – the trace of the 
midpoint of this geodesic – lies between 0 and 1, and measures the “closeness” between states according 
to how far leftward the geodesic curves.  

This space has a unique invariant Riemannian metric, with the metric tensor g defined at a particular 
point (i.e. matrix) M by:  

𝑔(𝜌, 𝜎)|; = 𝑇𝑟(𝑀%"𝜌𝑀%"𝜎) 

𝜌, 𝜎,𝑀	are positive definite matrices. 
As shown in Figure 1, this geodesic curves towards the tip of the cone (the 0 matrix), and the 

Matsumoto fidelity is a measure of how far it curves (i.e. how small the trace of the midpoint becomes). 
Quantum states that are close together (with respect to this metric) in the space of all quantum states 
have a geodesic which does not deviate far from that space, and so the trace of the midpoint is close to 
unity. 

3.2 Qubits 
The metric in Equation (20) takes a particularly simple form for qubits, using the following 

parameterization for positive definite 2´	2 matrices. 
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Where  
Then it can be shown that the metric in Equation (20) becomes: 

 

The metric for can be recognized as three-dimensional hyperbolic space in radial 

coordinates, meaning that the geometry of 2´2 positive definite matrices with this metric is ℝ	´	ℍ<. 
 
Now r can be understood as parameterizing the purity of the state; with 𝑟 → ∞ for a pure state and 

r = 0 for the maximally mixed state. The parameter a is fixed for a quantum state once r is determined 
due to the unit trace condition, as the trace of  is given by: 

 

For quantum states, we have  so that   has 

trace 1. The angular coordinates q và f  are analogous to the angular coordinates of the Bloch sphere 
(Figure 2) 

 
Figure 2: Block Sphere 

 
Effectively, the 𝑠𝑖𝑛ℎ$𝑟 prefactor in front of the coordinates in the metric means that a curve is 

always shorter if it bends “inwards” towards lower r. A result of this is that the geodesic 
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Figure 3: An example of the geometric interpretation of the Matsumoto fidelity 

This is for the example discussed in the text: two qubit states with the same purity (characterized by 
the radial coordinate r) and angular coordinate f (representing the angular coordinate separating them 
on the Bloch sphere). However, unlike the Bloch sphere, only the orange line (at fixed 𝑟 = 𝑟= represents 
valid quantum states with trace 1; all other points in the plot are 2´2 positive definite matrices with 
non-unit trace. The space is associated with a hyperbolic geometry, so that the minimal geodesic 
between the points labelled 𝜌" and 𝜌$ (shown in blue) is not a straight line, but rather bends inwards. 
The trace at the midpoint along the geodesic (i.e. where 𝑟 = 𝑟)(> is the Matsumoto fidelity, and scales 
as exp	(𝑟)(> − 𝑟=). As the states approach purity, 𝑟= diverges to infinity, and 𝑟)(>  remains fixed as 
explained in the text, so the trace goes to zero regardless of how small Df is. This plot was made using 
𝑟= = 10 , Df=0.1, and the equation for the geodesic connecting the two points (with f= = 0  for 

convenience) is parameterized by the equation 𝑟(f) = 𝑎𝑟𝑐𝑡𝑎𝑛ℎi ?@AB	(.&)

CDE(f)% '()*	(-&)
/0)	(f)(12/	(Df%!)

/0)	(Df)

j between two 

quantum states passes through states with small siner r but the same a and hence has trace less than 1 
– i.e. the Matsumoto fidelity is less than 1 (see Figure 2). 

Let us use this geometrical picture to understand why the Matsumoto fidelity of two almost 
identical pure states is 0. Suppose we have two nearly-pure states with identical 𝑟 = 𝑟= (which we 
eventually take to infinity so that the states become pure), and f differing by a fixed (arbitrarily small) 
Df. Fix 𝛼 = 𝛼8(𝑟=) and f = F

$
 for simplicity. With these constraints, the geodesic between the states 

is restricted to a two-dimensional subspace parametrized by r and f, with the reduced metric  
𝑑𝑠$ = 𝑑𝑟$ + 𝑠𝑖𝑛ℎ$𝑟𝑑f$ 

This is exactly the radial coordinates for the hyperbolic plane ℍ$ 
To determine the Matsumoto fidelity of these two states, we need to find the trace of the midpoint 

of the geodesic connecting them in this space. Solving the geodesic equation gives the curve shown in 
Figure 3, which curves inwards toward the center. One can show that the midpoint  of the 

geodesic is at  and $. 
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For large 𝑟=, the former goes as  
 

So for large , becomes independent of . This means that the minimum radius  of 
the geodesic shown in Figure 3 remains fixed even as 𝑟= → ∞. 

Now let us evaluate the trace of this midpoint in order to determine the Matsumoto fidelity. On 
this subspace, and at large	𝑟=, the trace is  

 

Thus the Matsumoto fidelity of these two states is: 

 

with  independent of . Thus for fixed Df  and arbitrarily large 

𝑟=, we can see that this goes to 0, demonstrating that the Matsumoto fidelity of two distinct pure states 
is 0. We can also see why it goes to 0 so slowly when states are almost pure and almost identical, as 
shown in the top-right diagram of Figure 1; one can verify that f(Df) diverges to infinity as Df →0 
meaning that 𝑟= needs to become very large to suppress this prefactor i.e. the states need to be “almost 
pure” before the strange behaviour of similar states having negligible fidelity occurs. A similar 
argument to the one presented here can be constructed for non-qubit states. This example demonstrates 
how the geometric picture can be useful in understanding the behavior of the Matsumoto fidelity. 

4 Conclusion 
In this paper, we have explored the matrix equation involving the weighted geometric mean and 

their application to the Matsumoto fidelity for quantum states. It is also motivated by connecting to the 
geometry of positive definite matrices. The others matrix equations and their uses will be the subject of 
future paper. 
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