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Abstract

Inductive invariant inference is the fundamental problem in program verification, and
specifically in verification of functional programs that use nonlinear recursion and algebraic
data types (ADTs). For ADTs, it is challenging to come up with an abstract domain that is
rich enough to represent program properties and a procedure for invariant inference which
is effective for this domain. Although there are various techniques for different abstract
domains for ADTs, they often diverge while analyzing real-life programs because of low
expressivity of their abstract domains. Moreover, it is often unclear if they could comple-
ment each other, other than by running in a portfolio. We present a lightweight approach
to combining any existing techniques for different abstract domains collaboratively, thus
targeting a more expressive domain. We instantiate the approach and obtain an effective
inductive invariant inference algorithm in a rich combined domain of elementary and reg-
ular ADT invariants essentially for free. Because of the richer domain, collaborations of
verifiers are capable of solving problems that are beyond the capabilities of the collabora-
tors running independently. Our implementation of the algorithm is a collaboration of two
existing state-of-the-art inductive invariant inference engines having general-purpose first-
order logic solvers as a backend. Finally, we show that our implementation is capable of
solving a large amount of CHC-Comp 2022 problems obtained from Haskell verification
problems, for which the existing tools diverge.

1 Introduction

Programs handling algebraic data types (ADT) are known to be challenging for inductive
invariant inference, especially because of the recursive structure of ADTs. State-of-the-art
approaches based on elementary invariants (represented in first-order logic) [28, 25, 7] aim at
constructing a coarse abstraction which is not sufficient for proving functional correctness of
programs with ADTs. On the other hand, a recent approach of the RInGen verifier [30] allows
one to infer nonelementary ADT invariants by employing general-purpose automated theorem
provers like cvc5 [35, 3] and Vampire [31]. In particular, nonelementary regular invariants
are effective in capturing the recursive semantics of ADTs using automata but incapable of
expressing relational properties, e.g., involving equalities among variables like in first-order
logic (FOL). To mitigate these drawbacks, there is a need for a new approach to infer combined
inductive invariants, i.e., inductive invariants in a combination of elementary and nonelementary
domains. In practice, such a rich domain gives a verifier an ability to converge on a larger class
of real-life programs.
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Creating a verifier for such a combined domain from scratch is exceedingly hard. Instead, we
show how to obtain it by a minor change in any CEGAR-based elementary invariant inference
algorithm for transition systems. To that end, we introduce a novel approach for collaborative
inductive invariant inference. It applies in a setting of any two verifiers A and B for different
abstract domains, where A is an instance of CEGAR and B is an auxiliary verifier, and both
A and B are called collaborators. Our main insight then is to modify verifier A slightly, so it
could check the safety of a transition system by exchanging the information with collaborator
B. This is done by computing a sequence of simpler residual transition systems in verifier A
and checking their safety with verifier B. If at least one of the collaborators is able to verify
safety of a transition system, then the whole collaboration succeeds as well. We instantiated
this approach for ADTs to infer combined invariants by making use of verifier A to infer the
first-order part and verifier B to infer their nonelementary part. Thus, we get an algorithm
which is strictly more powerful than each collaborator alone, i.e., for many cases in practice
where both verifiers diverge on their own, but the collaboration still succeeds in verifying the
system.

We have implemented this algorithm on top of the Racer [22] and the RInGen verifiers
with two general-purpose theorem provers at the backend, namely cvc5 [35, 3] (finite model
finding engine) and Vampire [31]. We evaluated it on benchmarks obtained from Haskell
verification problems that are publicly available at the Competition of solvers for satisfiabil-
ity of Constrained Horn Clauses (CHC-Comp 2022). Our collaboration of two verifiers solves
significantly more benchmarks than a parallel composition of the corresponding verifiers run-
ning independently. Thus, our collaboration solves many safety problems that are beyond the
capabilities of both verifiers.

To sum up, our core contributions in this paper are as follows.

1. We present the novel approach to collaborative inductive invariant inference.

2. We instantiate it for combining invariant inference procedures for elementary and nonele-
mentary domains over algebraic data types and get a novel algorithm for automated
inference of inductive invariants in this combined domain.

3. We implemented this algorithm in the Racer and the RInGen verifiers.

4. We demonstrate the practical success of this approach on CHC-Comp 2022 benchmarks.

The rest of the paper is structured as follows. In Sec. 2 we give the necessary background
to the problem. In Sec. 3 we describe the core idea of our approach, abstracting away all
details. Sec. 4 adds the missing details, accomplishing the theoretical presentation of our
approach. Sec. 5 describes our implementation, and in Sec. 6 we present our experiments with
the implementation. Finally, in Sec. 7 we discuss related work and Sec. 8 concludes the paper.

2 Background

2.1 Automated Invariants Inference

We view programs as transition systems. Let ⟨S,⊆, 0, 1,∩,∪,¬⟩ be a complete Boolean lattice.

Definition 1. A transition system is a triple TS = ⟨S, Init, T ⟩, where Init ∈ S are initial
states and T : S → S is a transition function, such that:

• T is monotonic, i.e., s1 ⊆ s2 implies T (s1) ⊆ T (s2),
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Input: a program TS and a property Prop
Output: safe with an inductive invariant or unsafe with a counterexample

1 ⟨α, γ⟩ ← Initial()
2 while true do
3 cex,A←ModelCheck(TS, Prop, ⟨α, γ⟩)
4 if cex is empty then
5 return safe, A

6 if IsFeasible(cex) then
7 return unsafe, cex

8 ⟨α, γ⟩ ← Refine(⟨α, γ⟩ , cex)
Algorithm 1: CEGAR: a classic approach to compute invariants.

• T is additive, i.e., T (s1 ∪ s2) = T (s1) ∪ T (s2), and
• T (0) = Init.

A safety problem is a pair of a program TS and a property Prop ∈ S. A program is safe
with respect to a property iff for all n, Tn(Init) ⊆ Prop. Otherwise it is unsafe. Safety can be
witnessed by a (safe) inductive invariant I ∈ S, such that

Init ⊆ I, T (I) ⊆ I, I ⊆ Prop.

It is well known that the program is safe if and only if it has a safe inductive invariant. In
order to infer invariants automatically, one usually fixes some class of invariants L ⊆ S. A
verifier is an algorithm that returns an invariant in a class of invariants L for safe programs
and counterexamples for unsafe programs. We refer to L as to the domain of verifier. Note
that a verifier can diverge, e.g., in a case when the program is safe, but there is no invariant in
the domain witnessing safety.

Let A = ⟨A,⊑,⊥A,⊤A,⊓,⊔⟩ be a complete lattice of abstract states, which we refer to as to
an abstract domain. Given posets ⟨S,⊆⟩ and ⟨A,⊑⟩, a Galois connection (called abstraction)
is a pair of maps ⟨α, γ⟩ such that:

α : S → A, γ : A → S, ∀x ∈ S.∀y ∈ A. α (x) ⊑ y ⇔ x ⊆ γ (y) .

An abstract transition function T̂ : A 7→ A lifts the transition function in the abstract
domain with a possible overapproximation, i.e., for all a ∈ A, α(T (γ(a))) ⊑ T̂ (a). An abstract
domain together with a Galois connection uniquely define a class of invariants {γ(a) | a ∈ A}.
We slightly abuse the notation and call this class A as well. For a program TS = ⟨S, Init, T ⟩
and a property Prop, we assume that there exists an element a ∈ A, then γ(a) is an inductive
invariant of ⟨TS, Prop⟩ iff

α(Init) ⊑ a, T̂ (a) ⊑ a, γ(a) ⊆ Prop.

We also require checks of the form γ(a) ⊆ Prop to be computable.
Classically, verification is achieved using Counter-Example Guided Abstraction Refinement

(CEGAR) [10] pseudocode of which is shown in Algorithm 1. It begins with building an initial
abstraction ⟨α, γ⟩, e.g., by trivial mappings like ∀s.α(s) = ⊥A and ∀a.γ(a) = 1. From a
concrete program and its abstraction, the algorithm builds a finite sequence of abstract states
a = ⟨a0, . . . , an⟩ such that:

a0 = α(Init) and ai+1 = ai ⊔ T̂ (ai) ∀i ∈ {0, . . . , n− 1} (1)

If at some point γ(ai) ̸⊆ Prop then an abstract counterexample cex is returned with either A = 0
(if i = 0) or A = γ(ai−1), which still satisfies γ(ai−1) ⊆ Prop. If for all i, γ(ai) ⊆ Prop, and at
some step T̂ (an) ⊑ an, then γ(an) is an inductive invariant, so ModelCheck returns it as A
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and no cex. The notion of abstract counterexample is defined by each particular instantiation
of CEGAR. Observe from the above, that a returned value of ModelCheck satisfies the
following:

A = 0 or Init ⊆ A ⊆ Prop. (2)

If no abstract counterexample exists, then the program is safe and γ(an) is an inductive
invariant. Otherwise, an abstract counterexample should be checked for feasibility. If there
exists a corresponding concrete counterexample, CEGAR halts with a counterexample, and
otherwise it proceeds to iteratively refining abstraction ⟨α, γ⟩ to exclude counterexample cex.

2.2 First-Order Theory of Algebraic Data Types

A many-sorted ADT signature is a pair Σ = ⟨ΣS ,ΣF ⟩, where ΣS is a set of sorts and ΣF is a
set of function symbols (constructors)1. Each function symbol f ∈ ΣF has an associated sort
σ1 × · · · × σn → σ (possibly with n = 0), where σi, σ ∈ ΣS . From now on, we consider Σ fixed.

We denote a set of ground Σ-terms with sort σ by Tσ. By C we denote an assertion language,
the many-sorted first-order language of Σ-formulas over predicates {=σ| σ ∈ ΣS} (throughout
the paper, we omit subscripts of = since they are clear from the context). By H we denote a
structure with domains Tσ for each sort σ ∈ ΣS that interprets every ground term with itself,
and every symbol =σ with H(=σ) = {(x, x) | x ∈ Tσ}. A formula φ in the assertion language
is satisfiable modulo theory of ADTs, if H |= φ.

A formula φ′ is a ground instantiation of a formula φ if φ′ is obtained from φ by substituting
every free variable in φ with some ground term. A relation, defined by formula φ, denotedH(φ),
is a set {a | H |= φ(a)}. By ∀φ we denote the universal closure of φ.

2.3 Constrained Horn Clauses

Let R = {P1, . . . , Pn} be a finite set of predicate symbols. Each symbol P ∈ R is associated
with some sort σ1 × · · · × σn from Σ. Predicate symbols from R are called uninterpreted.

Definition 2. A Constrained Horn Clause (CHC) C is a Σ ∪R-formula of the form:

φ ∧ P1(x1), . . . , Pn(xn)→ H

where C-formula φ is called a constraint of C, each Pi ∈ R, xi are tuples of pairwise different
variables, and H, called a head, is either ⊥ or an atomic formula P (x) for some P ∈ R and
variables x. The premise of a clause C is called its body denoted body (C). If H = ⊥, we
say that C is a query clause. A CHC system P is a finite set of CHCs with (for presentation
simplicity) a single query clause. Let rules (P ) be the set of clauses with P in head (P ∈ R).

Satisfiability of CHCs. Let P ∈ R be associated with sort σ1 × · · · × σm. We denote
the set Tσ1

× . . .×Tσm
by TP . Now we define a complete Boolean lattice of ⟨S,⊆, 0, 1,∩,∪,¬⟩,

which will serve us as a concrete domain of CHC transition semantics.

S def
= a set of all mappings from every P ∈ R to a subset of TP

s1 ⊆ s2 ⇔ ∀P ∈ R s1(P ) ⊆ s2(P ) s1 ∩ s2
def
= {P 7→ s1(P ) ∩ s2(P ) | P ∈ R}

0
def
= {P 7→ ∅ | P ∈ R} s1 ∪ s2

def
= {P 7→ s1(P ) ∪ s2(P ) | P ∈ R}

1
def
= {P 7→ TP | P ∈ R} ¬s def

= {P 7→ TP \ s(P ) | P ∈ R}

1For simplicity, we omit the selectors and testers from the assertion language because they do not increase
its expressiveness.
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By H{P1 7→ X1, . . . , Pn 7→ Xn} we denote the Σ ∪ R-expansion of Σ-structure H from
Sec. 2.2, which interprets every symbol Pi with relation Xi. We say that a system of CHCs P
is satisfied by s ∈ S modulo theory of ADTs, written as s |= P, if for each C ∈ P, H{P1 7→
s(P1), . . . , Pn 7→ s(Pn)} |= ∀C. We say that system P is satisfiable iff s |= P for some s ∈ S.

Transition semantics of CHCs. A CHC system P defines the transition system

⟨S, Init, T ⟩, where Init
def
= T (0) and

T (s) (P )
def
=

{
t |

(
B → P (t)

)
is a ground instance of some clause from P, s |= B

}
.

Without loss of generality, we assume that each CHC system P is transformed to have a
single query predicate Q, that is,

P ′ def
= rules (P) ∪ {body (C) (x)→ Q(x) | C is a query clause of P} ∪ {Q(x)→ ⊥}.

A property is thus defined as Prop(Q)
def
= ⊥ and for each P ∈ R, Prop(P )

def
= ⊤.

Proposition 1. A CHC system P is satisfiable iff the corresponding transition system
⟨S, Init, T ⟩ is safe with respect to Prop.

Example 1 (ForkJoin). Consider CHCs over an ADT Prog ::= Seq |Fork(Prog)| Join(Prog),
describing a concurrent program transformation.

p = Seq → ok(p)

p′ = Fork(Join(p)) ∧ ok(p)→ ok(p′)

p = Seq ∧ t = Fork(p′)→ tr(p, t)

t = Join(Seq)→ tr(p, t)

p′ = Fork(Join(p)) ∧ t′ = Fork(Join(t)) ∧ tr(p, t)→ tr(p′, t′)

ok(p) ∧ tr(p, p)→ ⊥
In this system, R = {ok, tr}, rules are all clauses except the last one, which is a query

clause. This system is satisfied by s, where s(ok) = E and s(tr) = {(p, t) | p ̸= t∨ t ̸∈ E}, where
E is the least fixpoint of the ok predicate.

2.4 Elementary Domain

The elementary domain is commonly used in the CHC solving community, e.g., by state-of-
the-art tools like Spacer [29], Eldarica [25], and Hoice [7]. More recent Racer [22] is also
based on the enrichment of this domain with recursive functions.

We say that a relation X ⊆ Tσ1
×. . .×Tσm

is C-definable (elementary) if there is a C-formula
φ such that H(φ) = X. A model s ∈ S is C-definable (elementary) if for each P ∈ R, s(P ) is
elementary. We denote the class of all C-definable models with Elem. An elementary abstract
domain is AElem = ⟨Elem,⊑,⊥Elem,⊤Elem,⊓,⊔⟩, where:

a1 ⊑ a2 ⇔ for all P, H |= a1(P )→ a2(P ) γ(a)
def
= {P 7→ H(a(P ))}

⊥Elem
def
= {P 7→ ⊥} ⊤Elem

def
= {P 7→ ⊤}

a1 ⊔ a2
def
= {P 7→ a1(P ) ∨ a2(P )} a1 ⊓ a2

def
= {P 7→ a1(P ) ∧ a2(P )}.

3 Collaborative Invariant Inference: Core Idea

For programs with ADTs, the expressiveness issue of verifier domains is a typical source of
verifier divergence besides the undecidability of verification itself. As motivated in [30], invari-
ant inference approaches for ADT problems rely on verifier domains, which lack expressivity
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Parameters: Verifier O over domain B
Input: a program TS and a property Prop
Output: safe with a combined invariant in A ⊎ B or unsafe with cex

1 ⟨α, γ⟩ ← Initial()
2 A← 0
3 while true do
4 async call Collaborate (TS, Prop, ⟨α, γ⟩ , A)
5 cex,A←ModelCheck(TS, Prop, ⟨α, γ⟩)
6 if cex is empty then
7 return safe, A

8 if IsFeasible(cex) then
9 return unsafe, cex

10 ⟨α, γ⟩ ← Refine(⟨α, γ⟩ , cex)
Algorithm 2: CEGAR(O).

themselves. However, they might be fruitfully combined. Yet there has not been an approach
to infer invariants by combining verifier efforts, as it is not straightforward how to make the
existing verifiers collaborate.

In this section, we give an overview of our novel approach to collaborative inference of
combined invariants, and we defer the technicalities to the next section. We keep it general
enough to be potentially applicable to verifiers with different abstract domains, and even to
verifiers for programs with features beyond ADTs.

We call the approach CEGAR(O) as the collaboration process can be viewed as CEGAR
that queries some oracle O, which might not terminate. Let the domains of verifiers be classes
A and B respectively. CEGAR(O) allows us to construct invariants in the union of these
classes.

Definition 3. For classes of states A ⊆ S and B ⊆ S, a combined class of states is

A ⊎ B def
= {A ∪B | A ∈ A, B ∈ B}.

A combined inductive invariant in classes A and B is an inductive invariant in A ⊎ B.

CEGAR(O) Algorithm 2 gives pseudocode of our approach. The algorithm is similar
to the classic CEGAR one, as we have presented in Algorithm 1, but at the beginning of every
iteration it asynchronously queries the collaborating verifier O by calling the Collaborate
routine (line 4). Asynchronous calls prevent the algorithm from getting stuck while continuously
refining the abstraction.

The Collaborate procedure is shown in Algorithm 3. Given the original safety problem,
the current abstraction, and A = γ(a) for some a ∈ A, it forms a new residual transition system

TS′ = ⟨S, Init′, T ′⟩ = ⟨S, T (A) \A, λB. (T (B) \A)⟩ .
The safety of the residual system is then checked by the collaborating verifier O. Here A \B is
a shorthand for A∩¬B. Note that Algorithm 3 overwrites the abstraction used in Algorithm 2
(line 6), i.e., ⟨α, γ⟩ is global and shared between two procedures.

Intuitively, the residual transition system describes states that are reachable from the states
that violate the inductiveness of A. Indeed, initial states Init′ are T (A) \A, one-step image of
non-inductive states. T ′(Init′) = T (T (A) \A) \ A, a set of two-step images of non-inductive
states. Our insight is to use another verifier to weaken the non-inductive set of states A to some
fixpoint in a combined class. If the second verifier finds the inductive overapproximation B of
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Parameters: Verifier O over domain B
Input: Program TS = ⟨S, Init, T ⟩, property Prop, abstraction ⟨α, γ⟩, set of states A,
such that A = 0 or Init ⊆ A ⊆ Prop

1 TS′ ← ⟨S, T (A) \A, λB. (T (B) \A)⟩
2 B, cex← O (TS′, P rop)
3 if cex is empty then
4 halt with safe, A ∪B

5 ĉex← RecoverCex (TS, Prop, ⟨α, γ⟩ , A, cex)
6 ⟨α, γ⟩ ← Refine(⟨α, γ⟩ , ĉex)

Algorithm 3: Collaborate subroutine.

non-inductive states, then A∪B is an inductive invariant of the original system. Intuitively, we
split the safe, yet non-inductive, part of the current invariant candidate and let the collaborating
verifier to fill holes in it to accomplish fixpoint construction.

If O halts with inductive invariant B, then we yield the combined invariant A∪B. If O re-
turns the concrete counterexample cex, Collaborate recovers a new abstract counterexample
ĉex from it and then proceeds by refining the domain with ĉex.

Note that neither set of states A nor B is sufficient to separately prove the safety of the
original transition system. Intuitively, it means that the collaboration is done by delegating
simpler problems to the verifier O, the solution to which gives only one part of an answer.

Lemma 1. If Collaborate (TS, Prop, ⟨α, γ⟩ , a) halts with SAFE(A∪B) (line 4), then A∪B
is a combined invariant of ⟨TS, Prop⟩.

Proof. Initial. From (2) we have Init ⊆ A ⊆ A ∪ B or A = 0 and then by the definition of
T (0), Init = T (0) \ 0 = T (A) \A ⊆ B ⊆ A ∪B.

Transition. From soundness of O, B is an inductive invariant of (⟨S, Init′, T ′⟩ , P rop), i.e.,
T (A) \A ⊆ B (Init′ definition) and T (B) \A ⊆ B (T ′ definition), so (T (A) ∪ T (B)) \A ⊆ B,
from which we have T (A) ∪ T (B) ⊆ A ∪B, hence as T is additive, T (A ∪B) ⊆ A ∪B.

Property. A ⊆ Prop from (2) and B ⊆ Prop by soundness of O, so A ∪B ⊆ Prop.

Counterexamples to the residual safety problem are traces that violate the inductiveness
of a current invariant candidate A. That is, a concrete counterexample to safety of the resid-
ual system (i.e., cex at line 2 of Algorithm 3) corresponds to some abstract counterexample.
CEGAR(O) is parametrized by the RecoverCex procedure, which recovers an abstract coun-
terexample to TS from a counterexample to the residual program (line 5). As an instance, in
Sec. 4.2 we propose a procedure which builds an abstract counterexample in linear time on the
size of a refutation tree for constrained Horn clauses and elementary abstract domain.

Requirement 1. If ĉex = RecoverCex (TS, Prop, ⟨α, γ⟩ , a, cex), then ĉex is an abstract
counterexample to ⟨TS, Prop⟩ with respect to ⟨α, γ⟩.

Theorem 1. If verifier O is sound, then CEGAR(O) is sound.

Proof. Immediately follows from the soundness of the original CEGAR [10], Lemma 1 and
Requirement 1.

Theorem 2. If CEGAR or verifier O terminate on ⟨TS, Prop⟩, then CEGAR(O) termi-
nates2 on ⟨TS, Prop⟩.

2under informed guess assumption: we assume that abstract counterexamples from O do not “mislead”
refinement
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Input: CHC system P, elementary model a ∈ AElem

Output: Residual CHC system P ′

1 Φ← P with every uninterpreted atom P (t) replaced with a(P )(t) ∨ P (t)
2 return CNF (Φ)
Algorithm 4: ResidualCHCs algorithm for generation of a residual CHC system.

Proof. If O terminates, so does the first call Collaborate (TS, Prop, ⟨α, γ⟩ , 0), as Init′ =
T (0) \ 0 = Init and T ′ = λB.(T (B) \ 0) = T . If CEGAR terminates, so does CEGAR(O),
as a call to Collaborate is asynchronous.

4 Collaborative Verification of Horn Clauses over ADTs

This section presents our main approach. The core idea is described in the previous section, so
here we adapt CEGAR(O) for CHCs over ADTs and thus achieve two goals:

• to infer inductive invariants represented in first-order theory of ADTs enriched with mem-
bership constraints x ∈ L;

• to extend the SMT-based CHC solvers with querying generic-purpose FOL solvers like
saturation-based provers [31] and finite model finders [9, 35].

Combined domain. We begin by investigating the combination of Elem and arbitrary
A abstract domains as an expanded first-order language. For every a ∈ A with γ(a) = L ⊆
Tσ1 × · · ·×Tσm we define a predicate symbol “∈L” with an arity σ1× · · ·×σm. A membership
constraint is an atomic formula with a membership predicate symbol. Its semantics is defined by
expanding H with H(∈ L) = L. A first-order ADT language over predicate symbols of equality
and membership constraints is called first-order language with membership constraints. This
language naturally defines the abstract domain Elem(A) of mappings from R to its formulas.

4.1 CEGAR(O) for CHCs: Generating Residual System

Recall that Collaborate routine in Algorithm 2 starts by constructing a new system

⟨Init′, T ′⟩ = ⟨T (A) ∩ ¬A, λB. (T (B) ∩ ¬A)⟩
which gets passed to the off-the-shelf verifier. The procedure ResidualCHCs(P, a) (see Algo-
rithm 4) performs the equivalent construction by transforming the original CHC system P in
two steps. It takes an original system P and an elementary model a as input.

First, it substitutes each atom P (t) in both heads and bodies of the CHC system with
disjunction a(P )(t) ∨ P (t) (line 1). Second, it moves the C-formula from the head to the
body with the negation and splits clauses by the disjunction. For example, a clause C0 ≡
P (x)∧φ(x, x′)→ P (x′) would become (a(P )(x)∨P (x))∧φ(x, x′)→ (a(P )(x′)∨P (x′)), which
after conversion to Conjunctive Normal Form (CNF, line 2) would be split into a clause system
P ′ = {C1, C2}, where

C1 ≡ a(P )(x) ∧ φ(x, x′) ∧ ¬a(P )(x′)→ P (x′) (3)

C2 ≡ P (x) ∧ φ(x, x′) ∧ ¬a(P )(x′)→ P (x′). (4)

Let us compute Init′ = T ′(0) = {x′ | C ≡ (B → P (x′)) , C ∈ P ′, 0 |= B}. Recall that
0(P ) = ⊥, so 0 ̸|= C2, as there is a predicate call P (x) in C2 body. Thus Init′ =
{x′ | C ≡ C1, 0 |= a(P )(x) ∧ φ(x, x′) ∧ ¬a(P )(x′)} = {x′ | H |= a(P )(x) ∧ φ(x, x′) ∧ ¬a(P )(x′)}.
On the other hand,
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(T (a) ∩ ¬a)(P ) = {x′ | a |= P (x) ∧ φ(x, x′)} ∩ ¬γ(a) =
= {x′ | H |= a(P )(x) ∧ φ(x, x′),H |= ¬a(P )(x′)} = Init′.

The same steps can be performed with T ′. That is, after the CNFization we get CHCs
which semantically correspond to the residual system.

Example 2. Given an elementary model a(tr)(p, t) ≡ ¬(p = t) ∨ t = Join(Seq), a(ok)(p) ≡
p = Seq for Example 1, ResidualCHCs first produces a formula

p = Seq → (p = Seq ∨ ok(p))

p′ = Fork(Join(p)) ∧ (p = Seq ∨ ok(p))→ (p′ = Seq ∨ ok(p′))

p = Seq ∧ t = Fork(p′)→ (¬(p = t) ∨ t = Join(Seq) ∨ tr(p, t))

t = Join(Seq)→ (¬(p = t) ∨ t = Join(Seq) ∨ tr(p, t))

p′ = Fork(Join(p)) ∧ t′ = Fork(Join(t)) ∧ (¬(p = t) ∨ t = Join(Seq) ∨ tr(p, t))→
→ (¬(p′ = t′) ∨ t′ = Join(Seq) ∨ tr(p′, t′))

(p = Seq ∨ ok(p)) ∧ (¬(p = p) ∨ p = Join(Seq) ∨ tr(p, p))→ ⊥
which is simplified to

p = Fork(Join(Seq))→ ok(p)

p′ = Fork(Join(p)) ∧ ok(p)→ ok(p′)

t = Fork(Join(Join(Seq)))→ tr(p, t)

p′ = Fork(Join(p)) ∧ t′ = Fork(Join(t)) ∧ p′ = t′ ∧ tr(p, t)→ tr(p′, t′)

(p = Seq ∨ ok(p)) ∧ (p = Join(Seq) ∨ tr(p, p))→ ⊥.
Note that this residual system is simpler than the original of the Example 1 as the last tr clause
contains new equality p′ = t′. That is, the elementary model a is “integrated” in the system
via the residual construction.

4.2 CEGAR(O) for CHCs: Recovering Counterexamples

In this section, we show how to recover an abstract counterexample from a concrete counterex-
ample to the residual system P ′ = ResidualCHCs(P, a), i.e., instantiate RecoverCex from
Algorithm 2.

Concrete counterexamples. It is well-known that unsatisfiability of CHC systems can be
witnessed by a resolution refutation, i.e., counterexamples are represented by refutation trees.

Definition 4. A refutation tree of a CHC system P is a finite tree with nodes ⟨C,Φ⟩, where
• C ∈ P and Φ is a Σ ∪R-formula;
• in the root node C is a query of P and Φ is a satisfiable Σ-formula;
• node ⟨C,Φ⟩ is a leaf only if Φ ≡ body (C) and Φ is a Σ-formula;
• node ⟨C,Φ⟩ has children ⟨C1,Φ1⟩, . . . , ⟨Cn,Φn⟩ only if: 1. body (C) ≡ φ∧P1(x1)∧. . .∧Pn(xn);
2. Ci ∈ rules (Pi); 3. Φ ≡ φ ∧ Φ1(x1) ∧ . . . ∧ Φn(xn).

A concrete counterexample for a CHC system P is a refutation tree of P.

Abstract counterexamples. Let us introduce another transformation Q (P, a) which
defines counterexamples to the abstraction. Intuitively, we have an abstract counterexample to
a CHC system when we have a refutation tree with some leaves being abstract states instead
of constrained facts. Thus, the transformation Q (P, a) for each P ∈ R adds to P new clauses

a(P )(x)→ P (x).
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Definition 5 (Abstract counterexample). An abstract counterexample for a CHC system
P with respect to an abstract state a is a refutation tree of Q (P, a).

That is, a refutation to Q (P, a) may not be a refutation to the original system P as some
refutation leaves might be abstractions a(P ). Yet these states may still be reachable in the
original system, so their feasibility is further checked in CEGAR.

That is, CEGAR needs abstract counterexamples, so we need RecoverCex procedure,
which recovers such abstract counterexamples to the original system from the concrete coun-
terexamples to the residual system. Let us now instantiate this procedure. More formally,
we will now show how to recursively build a refutation tree T ′ of P ′′ = Q (P, a) from T , a
refutation tree of P ′ = ResidualCHCs(P, a).

Base. T is a leaf ⟨C,Φ⟩, where C ∈ P ′. As Φ = body (C) is a Σ-formula, C is

φ ∧ a(P1)(x1) ∧ . . . ∧ a(Pn)(xn) ∧ ¬a(P )(x)→ P (x),

so we put the root of T ′ to be ⟨C ′,Φ′⟩, where
C ′ ≡ φ ∧ P1(x1) ∧ . . . ∧ Pn(xn)→ P (x) and Φ′ ≡ φ ∧ a(P1)(x1) ∧ . . . ∧ a(Pn)(xn),

with n leaf children ⟨C ′
i, a(Pi)(xi)⟩, where C ′

i ≡ a(Pi)(xi) → Pi(xi). Definition of a refutation
tree is trivially satisfied. Note that H |= Φ→ Φ′.

Step. T is a node ⟨C,Φ⟩ with children ⟨C1,Φ1⟩, . . . , ⟨Cn,Φn⟩, Ci ∈ rules (Pi) from P ′ and

C ≡ φ ∧ a(R1)(y1) ∧ . . . ∧ a(Rm)(ym) ∧ ¬a(R)(y) ∧ P1(x1) ∧ . . . ∧ Pn(xn)→ R(y)

Φ ≡ φ ∧ a(R1)(y1) ∧ . . . ∧ a(Rm)(ym) ∧ ¬a(R)(y) ∧ Φ1(x1) ∧ . . . ∧ Φn(xn).

By the recursive step, we already have corresponding nodes ⟨C ′
1,Φ

′
1⟩, . . . , ⟨C ′

n,Φ
′
n⟩, so we define

C ′ ≡ φ ∧R1(y1) ∧ . . . ∧Rm(ym) ∧ P1(x1) ∧ . . . ∧ Pn(xn)→ R(y)

Φ′ ≡ φ ∧ a(R1)(y1) ∧ . . . ∧ a(Rm)(ym) ∧ Φ′
1(x1) ∧ . . . ∧ Φ′

n(xn).

We add new children for Rj :
〈
C ′

n+j , a(Rj)(yj)
〉
, where C ′

n+j ≡ a(Ri)(yi)→ Rj(yj).
For each i, H |= Φi → Φ′

i by induction, so for their conjunction we have H |= Φ→ Φ′.
We end up with the root of T , some ⟨C,Φ⟩, where C is a query of P ′. We already have a

corresponding root ⟨C ′,Φ′⟩ in T ′ for it by recursion, and we know that H |= Φ → Φ′. As Φ is
a satisfiable Σ-formula, so is Φ′, which concludes the proof that T ′ is a refutation tree of P ′′.

Proposition 2. The RecoverCex procedure is linear-time on the number of nodes of the
input refutation tree.

4.3 Combination with Regular Domain

Recently CHC solvers, namely RInGen [30] and RCHC [23], emerged to support a regular
domain (which we call Reg). This regular domain is based on tree automata and their op-
erations [11]. It is shown that Reg and Elem domains are incomparable, i.e., they intersect
yet do not consume one another [30]. The combined domain Elem(Reg) is their natural first-
order generalization, and our approach can be applied to, e.g., Racer and RInGen to infer
invariants in this domain automatically.

Our running example shows that Elem(Reg) is strictly more expressive than both domains.

Example 3. Recall the CHC system from Example 1. It is safe yet neither Reg nor Elem
invariants, and both Racer and RInGen (CHC-Comp winners; CHC solvers with Elem and
Reg abstract domains) launched independently diverge on it.

However, if we extend Racer to call RInGen via our CEGAR(O) approach, we can get
an invariant for this CHC system. Modified Racer infers Elem lemmas and runs RInGen
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oracle with a residual CHC system from Example 2, which halts with the following Reg part
of the invariant:

ok(p)⇔ p ∈ E , tr(p, t)⇔ t ̸∈ E ,
where E is the language of the following tree automaton.

s0Seq s1

Join

Fork

The abstract state from the Example 2 and the regular part of the invariant above are then
combined in the following Elem(Reg) invariant:

ok(p)⇔ p ∈ E , tr(p, t)⇔ ¬(p = t) ∨ ¬(t ∈ E).

5 Implementation

We implemented the approach in a tool called Collab(V) on top of the Racer [22] CHC
solver (a successor of Spacer [28]) in Z33 and the RInGen(V) [30] CHC solver based on
transformations and further integration with a general-purpose FOL-solver V4.

Z3/Racer. Racer implements an instance of the popular Property-Directed Reachability
(PDR) [28] framework that can be seen as a complex instance of CEGAR. PDR represents
an abstract set of states in a form of conjunction of formulas (called lemmas) of different
levels by iteratively increasing the level in a loop. The following is maintained: if a set of
lemmas {φi} was built on level n, then

∧
i φi over-approximates all states reachable in less

than n transition steps and under-approximates the safety property. Thus, lemmas built by
Racer fulfill the requirement of the abstraction A from the Collaborate subroutine (see
Algorithm 3). We modify Racer so that at the end of each iteration a set of lemmas of
maximal level is asynchronously passed to a new instance of RInGen(V).

RInGen(V). We implemented the Collaborate procedure in RInGen(V) with the
following generalization in the ResidualCHCs(P, a) procedure (see Sec. 4.1). We employ a
conjunctive form of Racer lemmas to infer invariants from Elem(A) of form

∧
i(φi(x)∨ x∈Li).

Having a(P ) =
∧

i φi, we replace all atoms P (t) with conjunctions of disjunctions
∧

i(φi(t) ∨
Li(t)) with fresh predicate symbols Li. This allows us to infer more general invariants than
Elem ⊎ A (see Defn. 3), which consists only of formulas of the form φ(x) ∨ x∈L.

After transformations, RInGen(V) calls a general-purpose background solver V with a time-
out significantly less than the original run (600 seconds against 30 seconds in our experiments).
Its output is then passed back to Racer where it is asynchronously processed. Thus, we
omit any expensive CNF transformation from Algorithm 4 as RInGen(V) relies on a sound
background solver V with full FOL support.

6 Experiments

Benchmarks. We have empirically evaluated Collab against state-of-the-art CHC solvers
on the “Tons of Inductive Problems” (TIP) [8] benchmark set which made up the majority of
the ADT track of CHC-COMP 2022 solver competition5. The set consists of 454 CHC systems

3https://github.com/Columpio/z3/tree/racer-solver-interaction
4https://github.com/Columpio/RInGen/releases/tag/chccomp22
5https://github.com/chc-comp/ringen-adt-benchmarks
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Racer RInGen(cvc5) Collab(cvc5)
Racer 20 10 20

RInGen(cvc5) 25 23
Collab(cvc5) 117

Table 1: SAT results, cvc5 backend

Racer RInGen(Vampire) Collab(Vampire)
Racer 20 19 20

RInGen(Vampire) 135 129
Collab(Vampire) 189

Table 2: SAT results, Vampire backend

Racer RInGen(cvc5) Collab(cvc5)
Racer 15 12 14

RInGen(cvc5) 21 17
Collab(cvc5) 19

Table 3: UNSAT results, cvc5 backend

Racer RInGen(Vampire) Collab(Vampire)
Racer 15 15 15

RInGen(Vampire) 46 28
Collab(Vampire) 28

Table 4: UNSAT results, Vampire backend

with inductive ADT problems, originally generated from Haskell programs.
Experiments were performed on the StarExec [37] platform having a cluster of machines with

Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz and Red Hat Enterprise Linux 7, 600 second CPU
time limit and with 16 GB memory limit.

Competing tools. The evaluation was performed against the baseline solvers: Z3 with
Racer engine [22] and RInGen [30]. As both Collab(V) and RInGen(V) rely on the FOL-
solver backend V, we evaluated them with V = cvc5 [3] and V = Vampire [24]. Racer
and RInGen(Vampire) took first places on CHC-COMP competition 2021 and 2022 ADT
tracks [36, 16]. Thus, for each V, we call Racer and RInGen(V) baseline for Collab(V).

We pose three research questions to be addressed in this comparison.

RQ 1 (Convergence). Recall that our main goal is to extend the invariant inference capabilities.
Does Collab solve more benchmarks than baseline tools working independently? In particular,
does Collab solve benchmarks, which cannot be solved by either of baseline tools?

RQ 2 (Performance). Collaboration can have the overhead of running multiple instances of
the CEGAR oracle in parallel. What is the performance impact of the collaborated run?

RQ 3 (Advancement characteristic). Are the benchmarks solved uniquely by Collab not solved
by others because of inexpressivity issue? In particular, how many benchmarks solved uniquely
by Collab are in not in Elem?

Results. The results are summarized in tables 1, 2, 3 and 4. Each table describes either
SAT or UNSAT results with RInGen and Collab having either cvc5 or Vampire backend. A
number in each cell stands for the amount of benchmarks solved both by the solver in column
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Figure 1: Comparison of runtimes (in milliseconds): Collab (x-axis) and a competitor (y-axis).

and the solver in row. Thus, the numbers on a diagonal (in bold) represent the total number
of results obtained by the corresponding tool.

On safe benchmarks our tool outperformed the competitors: 117 SAT answers on Col-
lab(cvc5) against only 20 SAT answers from Racer and 25 from RInGen(cvc5), as well as
189 SATs on Collab(Vampire) against 20 SATs on Racer and 135 from RInGen(Vampire).
That is, Collab(cvc5) solved 235% more benchmarks than parallel composition of Racer
and RInGen(cvc5), and 39% more benchmarks if we change the backend to Vampire. This
is a substantial progress over current state-of-the-art CHC-COMP winning solvers.

On unsafe benchmarks Collab solved less than a maximum of the baseline solvers: 19
(cvc5) and 28 (Vampire) UNSAT on Collab against 21 (cvc5) and 46 (Vampire) UNSAT
on RInGen. The main reason is that our approach is focused on the complex task of invariant
inference and does not enhance the counterexample search. All counterexamples in Collab
thus come directly from one of the baseline solvers. We do not reach some counterexamples
obtained from RInGen, as it is run with 30 seconds time limit from Racer in Collab.

Importantly, all 20 SAT and 15 UNSAT answers fromRacer were also obtained by Collab,
except for one near-time-limit UNSAT benchmark because of starting oracle process overhead.

However, there are benchmarks which were solved by the baseline solvers but not by our tool.
Collab(cvc5) did not solve 7 benchmarks, which were successfully verified by RInGen(cvc5).
Two of these benchmarks could be solved by increasing the 30 second collaborating solver time
limit in Collab. The remaining 5 benchmarks are solved instantly by RInGen(cvc5), yet
their results cannot be fetched from inter-process communication in our implementation. The
reason is that Racer diverges during SMT constraints solving queries, and thus it never reads
the outputs of the collaborating solver. This problem is completely technical and can be fixed by
reading the collaborating solver outputs in SMT kernel check points. We have a similar picture
for Collab(Vampire): in total, 24 unsolved benchmarks are solvable by RInGen(Vampire).
Only 8 of them are unsolved due to a low collaborating call time limit, and the remaining 16
are not solved because Racer diverged.

General performance plots for Collab against the baseline solvers are presented in
Figure 1. Each point in a plot represents a pair of the run times (msec × msec) of Collab
(x-axis) and a competitor (y-axis): triangles for Racer and circles for RInGen. Outer dashed
lines represent crashes, which both Racer and Collab have due to instability of the used
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Figure 2: Number of benchmarks (y-axis) solved both by Collab and Racer (34 in total)
and CPU time overhead (x-axis) of running Collab over running pure Racer. There are no
runs with overhead more than 80%, so the later x-axis is not shown.

Racer branch6. Inner dashed lines represent cases when a solver reached the time limit. As
Collab solved significantly more instances than the baseline solvers, most of the figures are on
top dashed lines of both plots. Half of the rest of triangles are near the diagonal, meaning that
collaboration finished after the first collaborative solver call. Another half of such triangles are
near one second (which is outlined by solid lines at the bottom left angle) for a similar reason
as to why some benchmarks are unsolved: the Racer engine of Collab performs complex
SMT-solving and thus does not read a collaborative solver result for some time. Most of the
circles not on the dashed lines are near the diagonal on both plots meaning that Collab
performed comparably with Racer when a collaborating solver did not help. This overhead is
to be discussed next.

Figure 2 shows the performance overhead which the collaboration gives. There are
correspondingly 34 and 35 benchmarks solved both by Racer and by Collab with either cvc5
or Vampire, which gives us 69 runs of Collab in total. On 35 out of these 69 runs Collab
outperformed Racer and on the remaining 34 it did not because no call to the collaborative
solver was successful, so Collab behaved just as Racer with process calling overhead. The
overhead on these 34 runs is presented in Figure 2. The plot shows how many times slower on
these runs Collab is against pure Racer. Overhead of most of the runs appears to be near
10%: the mean overhead across all runs is 15% and the median is 8%. There are only 6 runs
with overhead more than 20%. On three of them, Racer works from 14 to 70 seconds and
Collab is 40-50% slower because of accumulated amount of simultaneously run collaborating
processes. The remaining runs with the overhead over 20% are those where Racer works nearly
2 seconds and Collab works from 2 to 4 seconds too. That is why it gives high percentage
and thus it can be neglected.

Answer to RQ 1. Collab solves significantly more SAT benchmarks than baseline tools
working independently: 117 against 20 + 25 and 189 against 20 + 135 for different backends.
In particular, Collab(cvc5) solves 97 benchmarks unsolved by Racer and 94 benchmarks
unsolved by RInGen(cvc5). Collab(Vampire) solves 169 benchmarks unsolved by Racer
and 60 benchmarks unsolved by RInGen(Vampire).

Collab solves slightly less UNSAT benchmarks than baseline tools as our collaboration
approach does not introduce new counterexample building techniques and thus relies on running
underlying solvers. That is, orthogonal counterexample finding enhancements can be integrated
with our approach, e.g., one proposed in [6].

6We performed evaluation on top of it because it does not lose any results on our benchmarks compared to
a stable branch, but it sometimes performs almost ten times faster.
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A small amount of both SAT and UNSAT answers (2 for cvc5 as a backend and 8 for
Vampire) obtained by collaborating RInGen instances were missed by Collab because of
somewhat “hard-coded” time limit for the collaborating solver. This gives another room for
improvement, however it will likely make the total overhead grow as well if we increase the time
limit. Existing techniques to verification time prediction such as [15] could be applied to avoid
hard coding the time limit at all.

Some SAT and UNSAT answers (5 for the cvc5 backend and 16 for the Vampire back-
end) obtained by RInGen were missed by Collab because of its underlying Racer engine
divergence during solving SMT queries. This can be technically solved by introducing more
fine-grained synchronization with the collaborating solver process not on the Racer end (as in
Algorithm 2) but on the SMT solving end, which, on the other hand, will slightly increase the
total solving overhead.

To sum up, there are possible ways to improve our result, but it already significantly out-
performs state-of-the-art by the number of solved benchmarks.

Answer to RQ 2. As it was summarized in Figure 2, the median overhead of Collab is
near 8%, which comes from starting and managing oracle processes. High (> 50%) overheads
come from two runs finished in nearly 3 seconds.

Answer to RQ 3. It is hard to precisely calculate which of the benchmarks solved uniquely
by Collab are not in Elem since it is hard to formally prove the undefinability in Elem.
Although it could be estimated as the number of benchmarks where a backend either yields a
tree automaton with cycles or a saturation, and all unique SATs by Collab are such. So, we
suppose that all uniquely solved benchmarks do not belong to Elem, and we thus blame the
lack of expressivity for the divergence of baseline solvers which thus further motivates us to
advance the presented approach.

7 Related Work

ADT invariant inference. Most existing techniques infer ADT invariants expressed in first-
order logic, i.e., in the assertion language [28, 20, 34, 40, 17, 25]. As inductive invariants of
practical programs over ADTs cannot be expressed in FOL, a complementary way of expressing
ADT invariants as tree automata [11] has recently emerged in RInGen [30] and RCHC [23].
In our work, we showed how such complementary techniques can be combined collaboratively
and thus how to infer invariants in FOL with membership constraints. Recently proposed
Racer [22] infers ADT invariants in an extension of FOL with catamorphism constraints. Our
work is similar because tree automata can be viewed as catamorphisms yet Racer needs them
to be predefined by the user, while with our approach they can be inferred automatically.

Correlation of diverse invariant inference techniques. There are a number of works
correlating different invariant inference techniques, namely: IC3 and ICE in [39], IC3 and ab-
stract interpretation in [19], interpolation-based methods and concept learning in [18]. Such
papers investigate the theoretical similarities between compared techniques by detecting simi-
larities in order to understand and improve them. In contrast, our approach allows one to make
out of diverse techniques a new invariant inference algorithm for their combined domain.

Combined invariants. Combining abstract domains is a fruitful direction in abstract
interpretation [32, 21]. For example, the Astrée analyzer uses a combination of cooperative
abstract domains to improve the precision of the analysis [14]. Various combinations of abstract
domains are studied in [13]. Synthesis of invariants for combined SMT theories is studied in [4].
However, this work studies only the combination of EUF and LIA, while our approach is applied
to ADT theory. Although, we believe that our core idea described in Sec. 3 is generic enough to
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be adopted in other frameworks. The properties of the first-order ADT theory with membership
constraints, which we use as combined abstract domain in Sec. 4, are studied in [12].

Collaboration of verifiers. The idea of integration of multiple verification engines into
one is used in portfolio frameworks like [1]. Unlike the portfolio verifiers, we build the more
complex CEGAR-specific interconnections between the tools by generating a sequence of resid-
ual systems. Our idea can be viewed as extended CEGAR, which “accomplishes” the fixpoint
construction by querying the external oracle. From this point of view, our approach is similar
to oracle-guided inductive program synthesis [26].

Constrained Horn Clauses. Constrained Horn clauses have been proposed to be a lingua
franca for automatic program verification [5]. Since then, a number of CHC solvers have
arisen [33, 22, 25, 7, 27, 23, 17, 40, 30, 2, 38]. In this domain, our work can be considered as a
way of collaborating CEGAR-based CHC solvers with other ones.

8 Conclusion

In this paper, we introduced the CEGAR-based approach for collaborative inference of inductive
invariants in combined domains for programs over algebraic data types. We have shown that the
collaboration performs at least as well (in sense of convergence) than the collaborating verifiers
working independently, and that it can converge even in cases when all collaborating verifiers
diverge because it handles a richer class of invariants from a combined domain. We have applied
our approach to combine the fixpoint engine in Z3 with general-purpose logical solvers wrapped
into the RInGen framework. We have demonstrated that our approach can solve 235% more
instances than the virtually best solver of Z3 and cvc5 and 39% more instances than Z3 +
Vampire, with no substantial time overhead (8% on average).
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Sophie Tison, and Marc Tommasi. Tree Automata Techniques and Applications. 2008.

[12] Hubert Comon and Catherine Delor. Equational formulas with membership constraints. Informa-
tion and Computation, 112(2):167–216, 1994.

[13] Agostino Cortesi, Giulia Costantini, and Pietro Ferrara. A survey on product operators in abstract
interpretation. Electronic Proceedings in Theoretical Computer Science, 129:325–336, Sep 2013.
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