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Abstract 

The construction industry is characterized by physically demanding tasks and the 

adoption of awkward postures, both of which contribute to a high incidence of work-

related musculoskeletal disorders (WMSDs). Despite the significance of these factors, 

few studies considered the external load estimation that considers the actual weights 

being lifted and carried in ergonomic assessments. This research aims to enhance the 

accuracy of WMSD risk evaluations by integrating external load estimation into 

ergonomic assessments. We utilized skeleton tracking technology to automatically 

evaluate awkward postures based on the Rapid Upper Limb Assessment (RULA) 

framework, a method for evaluating the exposure of workers to ergonomic risk factors. 

Concurrently, we analyzed electromyography (EMG) signals measuring muscle activity 

to extract pertinent features for estimating external loads, which were subsequently 

integrated into the overall ergonomic assessment. Experimental results demonstrate that 

the Multi-Layer Perceptron-Back Propagation algorithm outperforms alternative 

machine learning classification methods, achieving an accuracy rate of 98.3%. 

1 Introduction 

Construction workers frequently encounter challenging physical conditions, such as prolonged 

exposure to uncomfortable postures and the necessity of lifting and transporting heavy materials (Park 

et al., 2018). These adverse conditions related to ergonomic risk factors not only heighten the 

possibility of developing Work-Related Musculoskeletal Disorders (WMSDs) but also result in 

increased error rates and a decline in overall productivity (Li et al., 2024). Consequently, it is 

imperative to systematically evaluate the ergonomic risks associated with various construction 

activities for enhancing health and safety management practices, ultimately contributing to the 

sustainable development of the construction industry (Liao et al., 2023). 
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Among the various methodologies employed to measure exposure to WMSD risks, posture-based 

ergonomic assessment stands out as one of the most widely utilized techniques (Janowitz et al., 2006). 

Traditional methods of manual observation involve an ergonomist who observes workers' postures 

and movements in real-time or through recorded video footage and then assigns scores with 

ergonomic assessment tool (Lowe et al., 2014). However, these manual observation techniques are 

often criticized for being labor-intensive and time-consuming, demanding substantial effort and 

susceptible to observer bias (Seo & Lee, 2021), which hinders the efficiency and reliability of 

ergonomic assessments in dynamic construction environments. In response to these limitations, recent 

advancements in ergonomic assessment have sought to employ wearable sensors and vision-based 

method to automate the recognition of potentially hazardous postures during ongoing tasks (Wang et 

al., 2015). Wearable sensor systems, such as joint angle measurement systems (Rodrigues et al., 2022) 

and inertial measurement units (IMUs) (Yan et al., 2017), typically concentrate on monitoring specific 

joints and movements. The focus on isolated joints may overlook how various body segments interact 

during complex tasks. Vision-based methods offer a more holistic approach to ergonomic assessment 

by evaluating the entire configuration of the body. Yu et al. (2019b) and Roberts et al. (2020) 

explored innovative approaches to three-dimensional (3D) pose estimation by utilizing two-

dimensional (2D) video inputs. With advancements in technology that can capture joint and activity 

information in real-time, Lin et al. (2022) developed a system that automatically selects appropriate 

assessment scales and calculates risk scores using image-based motion capture techniques. Hossain et 

al. (2023) employed deep learning techniques to predict ergonomic risk levels by analyzing 3D 

coordinates of human body positions. 

Despite the substantial body of research dedicated to posture estimation, the consideration of 

external load in ergonomic assessments is often overlooked. This oversight is particularly significant 

in construction settings, where workers frequently engage with external loads. Some studies (Fortini 

et al., 2020; Lorenzini et al., 2019; Ventura et al., 2021) have explored external loads with the focus 

on individual body joints, which may fail to capture the broader implications of external loads on the 

worker's entire musculoskeletal system. Yu et al. (2019a) developed a smart insole to estimate 

external load by using total weight minus the worker’s self-weight. However, it assumes that all 

external load is transmitted through the feet, rendering it ineffective for postures such as leaning 

against walls or sitting on the ground. In contrast, electromyography (EMG) offers a more 

comprehensive solution, as it offers insights into muscle activation patterns and the physiological 

demands placed on the body (Wang et al., 2015). By quantifying the electrical activity of muscles, 

EMG can provide a clear understanding of how external loads affect worker performance across 

various postures. Recent research by Kumari et al. (2023) exemplifies the potential of EMG in this 

context. Their analysis of EMG data focused on agricultural workers engaged in pushing and pulling 

operations, revealing significant changes in muscle activity corresponding to varying external loads. 

This approach highlights the utility of EMG in capturing the dynamic relationship between external 

loads and muscle engagement, offering a more nuanced understanding of ergonomic stressors. 

Our study proposes a framework that combines skeleton tracking technology with EMG signals to 

deliver a comprehensive assessment of worker well-being. By employing skeleton tracking, the 

system captures the 3D coordinates of body joints and employs the Rapid Upper Limb Assessment 

(RULA) method for automatic evaluation of human posture and movement. Concurrently, the 

analysis of EMG signals provides critical insights into the estimation of external loads placed on 

workers. This study will examine 40 widely utilized electromyography (EMG) features to identify the 

optimal combination that most accurately reflects external load. By integrating EMG analysis into 

ergonomic assessments, the framework enhances the monitoring of ergonomic risks and alerts 

workers to the potential risks of overexertion before injuries occur. Section 2 provides details of our 

proposed method to monitor ergonomic and estimate external load. The experimental design and 

results will be presented in Section 3, while the discussion will be illustrated in Section 4. The 

conclusion will be finally drawn in Section 5. 
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2 Method 

2.1 Ergonomic Assessment  

RULA is a widely recognized framework for evaluating ergonomics that aims to identify 

potentially harmful postures and movements that could contribute to the development of WMSDs 

(Nayak & Kim, 2021). RULA considers biomechanical and postural load requirements of job 

demands on the neck, trunk, and upper extremities. By using RULA, employers can take proactive 

steps to manage the risks associated with MSDs, creating a safe and comfortable work environment 

for workers.  

Despite its utility, the RULA assessment has significant limitations, particularly in dynamic and 

fast-paced environments like construction sites. Since RULA only allows the evaluator to assess 

worker’s posture at one point in time, it usually selects the representative postures, like the most 

difficult postures based on the worker interview and initial observation, or postures maintained for the 

longest period, or postures where the highest force loads occur (Middlesworth, 2012). The assessment 

generally involves analyzing a static image of the chosen posture, which can take approximately 10 to 

20 minutes, depending on the complexity of the task being performed. However, construction workers 

frequently change their postures and perform a variety of tasks quickly, making it difficult for 

evaluators to capture an accurate representation of ergonomic risks at any single moment. This static 

approach can lead to incomplete assessments and may overlook critical factors affecting worker 

safety and comfort. Therefore, our method aims to enhance this process by automatically calculating 

the RULA score, allowing for more efficient and timely instructions. The model proposed in this 

project can detect real-time motion of human and generate 3D-coordinate of 32 joints. The joint data 

can subsequently be visualized in the form of a skeletal representation and used to evaluate the 

ergonomic level automatically based on RULA.  

 

(a) (b)  

 

Figure 1: (a) Human Skeleton Model (b) RULA 

 

Azure Kinect developed by Microsoft is capable of capturing depth images and tracking skeletal 

joints, allowing for the representation of position and orientation in three-dimensional space (Ahad et 

al., 2021). The skeleton data consists of a set of 𝑃 joints 𝐽 =  [𝐽1, 𝐽2, 𝐽3, … , 𝐽𝑃  ] where 𝑃 equals to 
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the number of joints. In our method, the dataset contains 32 joints, as shown in Figure 1(a). We 

calculated a position-based kinematics feature vector for every skeleton frame, with each joint 

denoted as a three-dimensional vector 𝐽𝑖 = [𝐽𝑖𝑥
, 𝐽𝑖𝑦

, 𝐽𝑖𝑧
]  within the Kinect coordinate system. The 

skeleton vector 𝒗 be calculated by subtracting the coordinates of the final joint point 𝐽𝐹 from the 

initial joint point 𝐽𝑆. Some RULA criteria are determined by analyzing the amplitude of body segment 

movement, such as the swing of upper arm, as shown in Figure 1(b). In the Azure coordination, there 

are three directions of vectors 𝒗𝒊 = {𝒗𝒙, 𝒗𝒚, 𝒗𝒛}. The amplitude of movement can be represented as 

the angle between the skeleton vector and direction of vector, calculated by Equation (1).  

cos(𝜃) =
𝒗 ∙ 𝒗𝒊

|𝒗||𝒗𝒊|
(1) 

When assessing the upper arm position, humans are supposed to stand on the planes parallel to x-z 

plane according to the coordinate systems in the depth camera. The direction of vector 𝒗𝒊 should be 

𝒗𝒚 that is [0, 1, 0]. The vector of left upper arm 𝒗 can be determined by subtracting the coordinates of 

the final point of left elbow from the initial point of left shoulder. The score of left upper arm will be 

one from 20-degree extension to 20-degree flexion (20 ≤ 𝜃). The score of left upper arm will be two 

for 20-to-45-degree extension or flexion (20 < 𝜃 ≤ 45). The score of left upper arm will be three for 

45-to-90-degree extension or flexion (45< 𝜃 ≤ 90). The score of left upper arm will be three for 

more than 90-degree extension or flexion (90 < 𝜃). 

2.2 Classification Method 

In this study, we frame the estimation of external load as a classification problem, employing 

electromyography (EMG) features as input variables to explore robust classification techniques. Our 

objective is to effectively categorize the EMG signals into three distinct load levels: 0 kg, 2 kg, and 5 

kg. The integration of machine learning algorithms into this framework enhances the capacity to 

detect and classify high-dimensional data, facilitating a systematic analysis of the complex patterns 

inherent in the EMG signals. Given the variability of signal patterns caused by external influences, 

such as changes in electrode positioning, classifiers are particularly well-suited to manage these 

fluctuations and mitigate the risk of overfitting (Asghari & Hu, 2007). To address the requirements 

for real-time processing and long-term operation, we will compare several advanced classification 

methods, including Multi-Layer Perceptron-Back Propagation (MLP-BP) neural networks (Reyes-

Fernandez et al., 2024), K-Nearest Neighbors (KNN) (Bukhari et al., 2020), and Support Vector 

Machine (SVM) (Liu et al., 2021).  

(1) MLP-BP 

MLP, as a type of artificial neural network, can establish mathematical models through a finite 

number of iterations, which suits the study of complex nonlinear characteristics (Dellacasa 

Bellingegni et al., 2017). It contains three types of layers: the input layer to present data to the 

network, hidden layer to perform weight vector computation on input data, and output layer to predict 

the response value. Each layer is composed of different numbers of neurons, and the number of 

neurons in the input layer and output layer corresponds to the number of variables. The number of 

hidden layers and neurons in hidden layers plays an imperative role in the output response. MLP uses 

the BP algorithm to train the network by propagating the error back through the layers of the network 

and adjusting the weights and biases of each neuron in the network, such that the error is minimized 

(Kotsiantis, 2007). MLP-BP has advantages in its accuracy and its excellent generalization capability, 

which can deal with incomplete, noisy, and fuzzy data (Kukreja et al., 2016). Meanwhile, it belongs to 

computationally intensive algorithms, which are time-consuming. 

(2) KNN 

The fundamental principle of KNN is that classification of unknown instances can be implemented 

by relating the unknown to the known based on some distance function (Paul et al., 2017). KNN 
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algorithm finds the K-nearest neighbors to the unknown instance, and the label of the unknown 

instance is allocated according to the majority vote of the K-nearest neighbors. It can be considered as 

two stages: a) use Euclidean distance to make pre-grouping of data and create subclusters and b) use a 

similar measure to merge the subclusters hierarchically (Rechy-Ramirez & Hu, 2011). As a non-

parametric algorithm, KNN is intuitive and easy to implement. Without training steps, new data can 

be added seamlessly, which allows a quick respond to changes in the input. Nevertheless, due to 

computation complexity and memory limitation, KNN has poor performance of large dataset and high 

dimensionality (Soofi & Awan, 2017). 

(3) SVM 

SVM is a statistical learning system for classification and regression analysis, which is essentially 

to determine a hyperplane or a boundary that separates the training data into classes (Subasi, 2013). 

New measured data is then stored and fed back to the model so that the influence of unknown 

disturbances frequently appeared in the process can be compensated, which improves the accuracy 

and achieves self-optimization. SVM is applicable not only to training data with many features 

relative to the number of training instances (Kotsiantis, 2007), but also to a wide range of 

classification problems such as high dimensional and not linearly separable problems. However, SVM 

will be limited to the dataset with more data or noise. 

2.3 Load Estimation Based on EMG Features 

Electromyography (EMG) is an instrument that allows the measurement and analysis of the 

electrical signals that are produced by muscle activity. Reaz et al. (2006) illustrated that a muscle is 

composed of bundles of specialized cells capable of contraction and relaxation. Skeletal muscle 

attaches to the bone, as one of the three significant muscle tissues, consists of thousands of muscle 

fibers wrapped together by connective tissue sheaths. Skeletal muscle can receive and respond to 

stimuli. Its contraction is initiated by electrical impulses that travel between the central and peripheral 

nervous systems and muscles, which facilitates the support and movement of the skeleton. When 

skeletal muscles contract, the electrical activity of the muscle fibers active can be detected by surface 

electrodes. After amplification, filtering, and processing, EMG signals can be acquired, which 

provides information about muscle function, like muscle activation and muscle recruitment patterns.  

In this study, EMG is used to provide a estimation of external load. Due to the enormous number 

of inputs and randomness of the EMG signal, it is impractical to feed the raw signals to a classifier 

directly (Asghari & Hu, 2007). Feature extraction converts the raw signals acquired into a relevant 

data structure by eliminating background noise and highlighting the important data (Rechy-Ramirez 

& Hu, 2011). The investigation of feature extraction characteristics in both the time domain and 

frequency domain has gained significance in the classification of EMG signals (Phinyomark et al., 

2012). 40 feature extraction methods that are widely applied are introduced in Table 1. 

 

no Symbol Feature Description Equation 

1 IEMG Integrated EMG  IEMG = ∑ |𝑥𝑖|𝑁
𝑖=1   

2 MAV Mean Absolute Value MAV =
1

𝑁
∑ |𝑥𝑖|

𝑁
𝑖=1   

3 MMAV Modified Mean Absolute Value  MMAV =
1

𝑁
∑ 𝑤𝑖|𝑥𝑖|𝑁

𝑖=1   

𝑤𝑖 = {
1,        if 0.25𝑁 ≤ 𝑖 ≤ 0.75𝑁
0.5,     otherwise                    

  

4 MMAV2 Modified Mean Absolute 

Value 2 
MMAV2 =

1

𝑁
∑ 𝑤𝑖|𝑥𝑖|𝑁

𝑖=1   
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𝑤𝑖 = {

1,              if 0.25𝑁 ≤ 𝑖 ≤ 0.75𝑁
4𝑖

𝑁
,            elseif 𝑖 < 0.25𝑁          

4(𝑖−𝑁)

𝑁
,     otherwise                      

  

5 SSI Simple Square Integral SSI = ∑ 𝑥𝑖
2𝑁

𝑖=1   

6 VARE Variance of EMG VARE =
1

𝑁−1
∑ 𝑥𝑖

2𝑁
𝑖=1   

7 TM Temporal Moment TM = |
1

𝑁
∑ 𝑥𝑖

3𝑁
𝑖=1 |  

8 RMS Root Mean Square 
RMS = √

1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1   

9 VO V-Order 𝑥𝑖 = (𝛾𝑚𝑖
𝛼)𝑛𝑖  

VO = (
1

𝑁
∑ 𝑥𝑖

𝑣𝑁
𝑖=1 )

1

𝑣  

10 LD Log Detector LD = 𝑒
1

𝑁
∑ log(|𝑥𝑖|)𝑁

𝑖=1   

11 WL Waveform Length  WL = ∑ |𝑥𝑖+1 − 𝑥𝑖|
𝑁−1
𝑖=1   

12 AAC Average Amplitude Change AAC =
1

𝑁
∑ |𝑥𝑖+1 − 𝑥𝑖|𝑁−1

𝑖=1   

13 DASDV Difference Absolute Standard 

Deviation Value DASDV = √
1

𝑁−1
∑ (𝑥𝑖+1 − 𝑥𝑖)2𝑁−1

𝑖=1   

14 ZC Zero Crossing ZC = ∑ [sgn(𝑥𝑖 × 𝑥𝑖+1) ⋂|𝑥𝑖 − 𝑥𝑖+1|𝑁−1
𝑖=1 ≥

threshold];  

sgn(𝑥) = {
1,        if 𝑥 ≥ threshold
0,        otherwise            

  

15 MYOP Myopulse Percentage Rate  

 
MYOP =

1

𝑁
∑ [𝑓(𝑥𝑖)]𝑁

𝑖=1 ;  

𝑓(𝑥) = {
1,        if |𝑥| ≥ threshold
0,        otherwise               

  

16 WA Willison Amplitude  WA = ∑ [𝑓(|𝑥𝑖 − 𝑥𝑖+1|)]𝑁−1
𝑖=1 ;  

𝑓(𝑥) = {
1,        if 𝑥 ≥ threshold
0,        otherwise            

  

17 SSC Slope Sign Change SSC = ∑ [𝑓[(𝑥𝑖 − 𝑥𝑖−1) × (𝑥𝑖 − 𝑥𝑖+1)]]𝑁−1
𝑖=2 ;  

𝑓(𝑥) = {
1,        if 𝑥 ≥ threshold
0,        otherwise            

  

18 SKEW Skewness SKEW =
𝑀3

𝑀2
√𝑀2  

𝑀𝑘 =
1

𝑁
∑ (𝑥𝑖

𝑁
𝑖=1 − 𝑥̅)𝑘  

19 KURT Kurtosis KURT =
𝑀4

𝑀2𝑀2
  

20 MFL Maximum Fractal Length MFL = log10(√∑ (𝑥𝑖+1 − 𝑥𝑖)
2𝑁−1

𝑖=1 )  

21 DVARV Difference Variance Value DVARV =
1

𝑁−2
∑ (𝑥𝑖+1 − 𝑥𝑖)2𝑁−1

𝑖=1   

22 IQR Interquartile Range IQR = 𝑄3 − 𝑄1  

23 MAD Mean Absolute Deviation MAD =
1

𝑁
∑ |𝑥𝑖 − 𝑥̅|𝑁

𝑖=1   

24 AR Auto-Regressive Model 𝑥𝑖 = − ∑ 𝑎𝑝𝑥𝑖−𝑝 + 𝑤𝑖
𝑃
𝑝=1   

25 AE Average Energy AE =
1

N
∑ 𝑥𝑖

2𝑁−1
𝑖=0   

26 VAR Variance VAR =
1

𝑁−1
∑ (𝑥𝑖 − 𝑥̅)2𝑁

𝑖=1   

27 SD Standard deviation 
SD = √

1

𝑁−1
∑ (𝑥𝑖 − 𝑥̅)2𝑁

𝑖=1   

28 CARD Cardinality 𝑦𝑖 = 𝑠𝑜𝑟𝑡 (𝑥𝑖)  
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CARD = ∑ |𝑦𝑖 − 𝑦𝑖+1|𝑁−1
𝑖=1 , if |𝑦𝑖 − 𝑦𝑖+1| >

threshold  

29 EMAV Enhanced Mean Absolute 

Value  
EMAV =

1

𝑁
∑ |𝑥𝑖

𝑝|𝑁
𝑖=1   

𝑝 = {
0.75,     if 0.2𝑁 ≤ 𝑖 ≤ 0.8𝑁
0.5,       otherwise                 

  

30 EWL Enhanced Wavelength EWL = ∑ |(𝑥𝑖 − 𝑥𝑖−1)𝑝|𝑁
𝑖=2   

𝑝 = {
0.75,     if 0.2𝑁 ≤ 𝑖 ≤ 0.8𝑁
0.5,       otherwise                 

  

31 NZC New Zero Crossing NZC =

{
1,        if 𝑥𝑖 > threshold and 𝑥𝑖+1 < threshold 
           or 𝑥𝑖 < threshold and 𝑥𝑖+1 > threshold
0,       otherwise                                                        

  

threshold = 4(
1

10
∑ 𝑥𝑖

10
𝑖=1 )  

32 ASS Absolute value of the 

Summation of Square Root 
ASS = |∑ (𝑥𝑖)1/2𝑁

𝑖=1 |  

 

33 MSR Mean value of the Square 

Root 
MSR =

1

𝑁
∑ (𝑥𝑖)

1/2𝑁
𝑖=1   

34 ASM Absolute Value of 

Summation of the expth root 
ASM = |∑ (𝑥𝑖)𝑒𝑥𝑝𝑁

𝑖=1 |  

𝑒𝑥𝑝 = {
0.75,        if 0.25𝑁 ≤ 𝑖 ≤ 0.75𝑁 
0.25,        otherwise                       

  

35 DAMV Difference Absolute Mean 

Value  
DAMV =

1

𝑁−1
∑ |𝑥𝑖+1 − 𝑥𝑖|

𝑁−1
𝑖=1   

36 LDAMV Log Difference Absolute 

Mean Value 
LDAMV = log (

1

𝑁−1
∑ |𝑥𝑖+1 − 𝑥𝑖|

𝑁−1
𝑖=1 )  

37 LDASD

V 

Log Difference Absolute 

Standard Deviation LDASDV = log √
1

𝑁−1
∑ (𝑥𝑖+1 − 𝑥𝑖)

2𝑁−1
𝑖=1    

38 COV Coefficient of Variation 

COV =
√

1

𝑁−1
∑ (𝑥𝑖−𝑥̅)2𝑁−1

𝑖=1

1

𝑁
∑ 𝑥𝑖

𝑁−1
𝑖=1

  

39 LCOV Log Coefficient of 

Variation LCOV = log
√

1

𝑁−1
∑ (𝑥𝑖−𝑥̅)2𝑁−1

𝑖=1

1

𝑁
∑ 𝑥𝑖

𝑁−1
𝑖=1

  

40 LTKEO Log Teager Kaiser Energy 

Operator 
LTKEO = log ∑ (𝑥𝑖

2 − 𝑥𝑖−1𝑥𝑖+1)𝑁−2
𝑖=0   

Table 1: EMG Feature and Equation 

3 Experiments and Results 

3.1 Experiment Design 

To examine the feasibility of the EMG-based parameters in classifying workers’ external loads, 

we conducted an experiment and recorded the electrical activity of 10 healthy subjects while 

performing tasks with different external loads. 5 males and 5 females were randomly selected, aged 

between 19 and 22 years old. The surface of the collection site (skin) was cleaned with alcohol and 

coated with glycerin or conductive paste to reduce skin surface impedance and enhance electrical 

conductivity. 

Subjects were asked to stand with the upper arm perpendicular to the ground without the 

abduction or adduction while the lower arm parallel to the ground without the extension or flexion, as 
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Figure 2 shown below. Three tasks required subjects to carry 0 kg, 2 kg, and 5 kg on their hands 

respectively. Subjects were asked to maintain the posture for around 6 seconds for one exercise. EMG 

data were collected after carrying the weight, which meant that the record did not include the process 

of putting up or down. A short period of rest was provided between each exercise to mitigate the 

cascading effect of fatigue. In total we collected 10 subjects × 3 exercises × 4 repetitions = 120 EMG 

recordings. 

(a) (b)  

 

Figure 2: (a) Posture of the Subject (b) Positions of Surface Electrode 

3.2 Experiment Results 

(1) Pose Estimation Results 

The automatic ergonomic assessment system has successfully implemented the real-time skeleton 

monitoring and visualization techniques to evaluate an individual's posture and movement dynamics, 

shown in Figure 3. This approach facilitates simultaneous monitoring of both the left and right sides 

of the body, and then selecting the higher score for the overall ergonomic assessment. Throughout the 

assessment process, essential metrics such as joint angles, posture deviations, and movement patterns 

are meticulously evaluated and presented in an intuitive format, enhancing the comprehension of 

ergonomic status.  

 
 

Figure 3: 3D Skeleton Plot 

 

(2) Load Estimation Results 

The surface EMG signals collected will inevitably be mixed with noise which can cause invalid 

features and disturb the classification. Three main types of noise in surface EMG signals include the 

inherent noise of the electronic components (0 to several kHz), power frequency interference (50 Hz 
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or 60 Hz), and the baseline to drift (0 to 20 Hz) (Li et al., 2020). Therefore, preprocessing is required 

to denoise signals and enhance feature extraction. Bandwidth of 20 to 500 Hz Bandpass filter and 50 

Hz notch filter were applied in this study to remove noise interference. The EMG signal output when 

the subjects carry different weight is shown in Figure 4. 

 

(a) (b) (c)  

 

Figure 4: EMG Output with (a) 0 kg (b) 2 kg (c) 5kg 

 

The processing of redundant and irrelevant features can diminish model accuracy while also 

prolonging execution time during classification tasks. To mitigate these issues, a feature selection 

algorithm is employed between the feature extraction and classification phases, allowing for the 

automatic identification of critical features (Baby et al., 2021). Our study utilized the Extra Trees 

classifier to discern the most significant features from the original set. This ensemble learning method 

enhances the tree splitting technique by reducing the variances inherent in many tree-based and neural 

network algorithms (Ossai & Wickramasinghe, 2022). Each tree is constructed from the original 

dataset. At each test node, extra tree is provided with a random sample of 𝑘 features in that each 

decision tree selects the most relevant feature to split the data according to the Gini index, which 

assists the further formulation of multiple de-correlated decision trees (Sharma et al., 2022). 

Ultimately, all features are ranked in descending order according to their Gini index scores, from 

which a specified number of top features is selected based on their importance. In this study, 0 kg, 2 

kg, and 5 kg were labeled with No-Load, Little-Load, and High-Load respectively. With the extra tree 

classifier, seven features with the most importance were selected: MSR, LD, CARD, SKEW, EMAV, 

ASM, LDASDV, as shown in Figure 5. 

 

 
 

Figure 5: Feature Selection 
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Given the available data, 84 trials were fed in for training while the remaining 36 trials were used 

for testing. In this study, MLP-BP had 7 neurons in the input layer that was equal to the number of 

features selected and 3 neurons for output layer that was the same as the number of labels. MLP-BP 

applied two hidden layers: the first layer had 30 neurons, and the second layer had 10 neurons. For 

this configuration, the Rectified Linear Unit (ReLU) activation function and sigmoidal activation 

function were used in the hidden and output layers respectively. The accuracy of MLP-BP model 

achieved 98.3% compared with KNN (94.4%) and SVM (97.2%). 

(3) Ergonomic Assessment Considering Awkward Posture and External Load 

The system is designed to automatically evaluate the ergonomic score for each body part based on 

the assessed posture of the worker. This evaluation process incorporates both the individual scores 

derived from body positioning and the estimated external load levels experienced during tasks. By 

integrating these two critical factors, the system provides a more comprehensive ergonomic 

assessment. The final score is determined using the RULA worksheet, which systematically evaluates 

the combined effects of awkward postures and external loads. This holistic approach not only 

highlights potential risks associated with specific postures but also addresses the impact of external 

loads on overall worker well-being. Consequently, the resulting ergonomic score serves as a valuable 

tool for identifying areas that may require intervention, ultimately promoting safer and more efficient 

work practices. 

 

 
 

Figure 6: Ergonomic Assessment Result 

4 Discussion 

By evaluating external load levels, the system can effectively identify instances of overloading 

and encourage workers to seek assistance as needed, thereby enhancing their overall well-being and 

minimizing the risk of injury. Furthermore, incorporating external load assessments into the RULA 

framework significantly enriches the evaluation of ergonomic risk factors. While traditional 

ergonomic assessments primarily focus on postural evaluation and movement patterns, the integration 

of load variables offers a more comprehensive understanding of the physical demands placed on 

workers. This holistic approach leads to a more nuanced and accurate assessment of ergonomic risks, 

facilitating the design of targeted interventions that can mitigate these hazards and ultimately foster a 

safer and more productive work environment. 

The ergonomics model developed in this study can be seamlessly integrated with a digital display, 

providing real-time feedback on the ergonomic status for each assessment frame. For instance, when 

scores reach 5 or 6, the system indicates that further investigation and adjustments are necessary, 
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prompting the display to alert the worker with a yellow light. A score of 7 signifies an urgent need for 

intervention, triggering a red-light alert. Additionally, the system can identify which side of the body 

presents greater ergonomic risks, enabling targeted corrective actions.  

5 Conclusions 

In this study, we present a framework that combines skeleton tracking technology with EMG 

signals to provide a thorough assessment of worker well-being. Skeleton tracking provided 3D 

coordinates of body joints and achieved automated evaluation of human posture and movement. This 

research also selected seven EMG features that are most pertinent to external load classification 

through Extra Trees classifier. By analyzing these features, we can effectively estimate external load 

levels in real time, thereby enhancing the ergonomic assessment process. Our results indicate that the 

MLP-BP algorithm outperforms alternative classification methods, achieving an exceptional accuracy 

rate of 98.3%. This finding highlights the potential of advanced machine learning techniques to 

improve safety and efficiency in HRC. 

However, this research has limitations regarding the experimental setting, which was conducted in 

a controlled laboratory environment. While this setting allows for precise measurement and analysis, 

it may not fully capture the complexities and variabilities present in real-world scenarios. Future 

studies should aim to conduct field experiments to validate the framework under diverse working 

conditions, accounting for factors such as varying work environments, different task demands, and the 

presence of multiple external influences. Additionally, involving a more diverse range of test subjects 

in future studies would provide a more comprehensive view of the proposed work, particularly 

considering individuals with different demographics, such as age, gender, and physical capability. 

This diversity could enhance the robustness of the findings and make the framework applicable to a 

broader population. By expanding the research to include these real-world settings and diverse 

participants, we can improve the applicability of our findings and further refine the framework to 

better support worker safety and well-being in actual workplace contexts. 
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