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Abstract 

If one could predict future web requests, it would be possible to make the web much 

faster. One could fetch web resources before they are needed.  When the human user 

clicks on a link, the needed data would already have been downloaded. 

We have created several algorithms that attempt to predict future web requests 

based on past histories.  Our research evaluates and compares these prediction 

algorithms against real histories of web usage. Prediction algorithm results are 

compared based on correct predictions, erroneous predictions, and prediction rate. 

Some algorithms make predictions rarely but accurately, while others may predict 

more often but with less accuracy. To take full advantage of this, we combine multiple 

algorithms and use different voting strategies to determine the best prediction. 

1 Introduction 

Users want the web to be fast.   

There are two factors when determining browsing performance: bandwidth and latency.   In many 

environments, it is not possible to create low latency, high bandwidth networks.  For example, in 

areas receiving satellite Internet, latency is high but bandwidth is reasonable.   When providing 

Internet connectivity by satellite to isolated consumers, long latencies are simply unavoidable because 

of the long distances involved, and the finite speed of light.   Ground based, fast Internet connectivity 

is also not possible when traveling via airliner or ship.  Even on the ground, many areas, including 

many poor areas of the world, are still not connected via DSL or cable-internet, let alone fiber optic 

connections. 

If one could predict future requests, it would be possible to reduce latency and make the web 

significantly faster.  The purpose of this research was to develop a predictor that can accurately 

predict what a user will browse next, thus reducing the appearance of latency and providing a faster 

web experience.  Such techniques only recently became possible.  By utilizing the capabilities of the 

recently published HTTP version 2.0, is it now possible for a web server to push soon to be needed 

resources to a connected web browser [1, 12,13].  By correctly identifying needed files and deliver 

them to the web browser before they are needed, perceived web speed will improve. 
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2 Previous Work 

Previous studies have shown that prefetching is effective at reducing user perceived latency.  

Research shows that a combination of caching and prefetching doubles web performance compared to 

simple caching [2,3,4,5,6,7,8].  According to [3,4], a combination of web caching and prefetching can 

potentially improve latency up to 60%, whereas web caching alone can improve latency up to 26%[7]. 

Different studies show different levels of predictive success.  It is difficult to directly compare 

predictors as they are usually evaluated against different workloads and measured using different 

metrics.  This work compares several different prediction algorithms against one another using the 

same workloads and scored using the same metrics.  Some of the algorithms presented combine 

various prediction algorithms using voting schemes to choose a result.  Such ensemble predictors 

have been shown to perform better than their component parts [9]. 

3 Methodology 

To test our prediction algorithms, log files from different web servers were collected. This data 

contained IP addresses and web sites for each request made to that server. Each IP address was made 

anonymous. The data used in our test came from two sectors, business and academic. The business 

data consisted of the log files of a company website while the academic data consisted of the log files 

of a server on our university’s network. By gathering log files from various sources, we were able to 

represent the variations present in real-world data.  All algorithms were tested against the same log 

files (about 200,000 requests) to make a fair apples-to-apples comparison.  Below, we present data 

using the academic log files; the results from the business log files were very similar showing the 

general applicability of the results. 

Code was written to test our predictors against the collected data. Our test program was designed 

to use our predictors to predict future URL requests using only the client IP address, and previous 

history of requests. The predicted URL was then compared with the actual future requests found in 

the log file.  The test program scored the solutions on correct predictions, erroneous predictions, and 

prediction rate. 

This methodology is similar to our previous work in [10]. 

Developing Prediction Algorithms 

We tried many different approaches to our problem.  Predictors based on many different ideas 

were developed.  Results were compared to the results in our previous work [10].  Hoping to improve 

performance, we chose to develop ensemble predictors. A search of previous work showed that voting 

predictors, which combine the results of many different prediction algorithms to make a single 

prediction, often outperform their component parts [11]. This information became the foundation for 

developing voting-based prediction algorithms. 

4 Prediction Algorithms 

Each predictor was scored using several metrics: 

 PredictionRate – How often did the algorithm make any prediction. 

 SuccessRate10 – How often was the algorithm's prediction within the next ten web requests.  

Sometimes a prediction algorithm will predict a file, and although that file is not the very next 
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request, it is requested in the near future. Prefetching based on such predictions is still 

productive and useful, and should count as a success. 

 WrongRate10 – How often was the algorithm’s prediction not within the next ten web 

requests. 

 Accuracy10 – Percent of predictions which were within the next ten requests.   

Accuracy10 = SuccessRate10 / (SuccessRate10 + WrongRate10). 

Clearly, a perfect predictor would have a successful prediction rate of 100%, and a wrong 

prediction rate of 0%, but no known predictor can achieve this. 
Note that the successful prediction rate added to the wrong prediction rate is rarely 100%.  Good 

prediction algorithms will often fail to make any prediction; for certain situations there is not enough 

information to make a prediction. 

As described above, we consider Accuracy10 to be a better metric than simply predicting the next 

request.  Our goal therefore is to make a prediction algorithm with both a high PredictionRate and a 

high Accuracy10. 

In practice, there is often a trade-off between number of predictions made and the error rate.  This 

trade-off ranges from making a few very predictions of excellent quality to making many predictions, 

of which each has only a moderate chance of correctness.  Every correct prediction improves 

performance.  Wrong predictions may or may not reduce performance, depending on how many 

resources were utilized to generate and send the unneeded data, and whether those resources were idle 

or in use.   Sending unneeded data can impose costs for networks that bill based on data sent, such as 

satellite links or phone networks.  Also, sending unneeded data over a busy network channel may 

slow the entire system including both the server, the network, and other users of these, whereas 

sending unneeded data over a free network channel may not significantly slow the system. 

5 Predictors 

Below is a list of prediction algorithms.  Each algorithm takes as input the most recent URL being 

requested, and the history of previous requests.  The predictor is allowed to make zero or one 

predictions.  Predictors that predict multiple files per request are an important area of future work.   

Although we don’t describe every predictor we tested, we do describe ideas that we thought might 

work, and yet did not.  Our hope is that others can learn from this, or at least not repeat these 

mistakes.  However, analysis focuses on successful ideas. 

5.1 The Last Instance Predictor 

This is a simple predictor.  When a resource is requested, we look back in history for the most 

recent time where the same user requested the same resource, and predict what followed.  If this is a 

first request, no prediction is made.  This algorithm produces many predictions, and is often wrong. 
 

PredictionRate 91% 

SuccessRate10 34% 

WrongRate10 57% 

Accuracy10 37% 

     Table 1:  Last Instance Predictor 
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5.2 The Pattern Predictor 

The Pattern predictor looks for an exact duplicate of long sequences of the most recent requests, 

and then projects the future based on these duplicates.  For example, if the last four files requested 

were (fileA, fileB, fileC, fileD), the pattern predictor will first look for another instance in the history 

of accesses for the pattern (fileA, fileB, fileC, fileD).  If it finds such an instance it will predict 

whatever followed.  Otherwise it will look for the shorter pattern (fileB, fileC, fileD) and if found 

predict whatever followed.  If there are no copies of the length four and three patterns, it will look for 

the length two pattern (fileC, fileD), and eventually just (fileD).  In practice we do not look for 

infinite length patterns, but start at length twenty because experimentation shows there are very few 

matching patterns of greater length.  This algorithm often makes a prediction (69% of the time), and 

when it does it is often right (78% of all predictions are correct). 

 

PredictionRate 69% 

SuccessRate10 55% 

WrongRate10 14% 

Accuracy10 78% 

                                      Table 2:  Pattern Predictor 

5.3 The Pattern By User Predictor 

The Pattern By User predictor works just like the Pattern predictor, except that we look at only the  

currently requesting user’s history.  The intuition behind this idea is that users might have different 

access patterns, and basing predictions of one user on the histories of other users might lead to errors.  

Since limiting the histories to be examined uses less data, we would expect fewer predictions to be 

made.  But experience shows that most users do follow the same patterns.  Therefore, this results in 

both less prediction volume and less accuracy. 

 

PredictionRate 34% 

SuccessRate10 24% 

WrongRate10 10% 

Accuracy10 70% 

                                       Table 3:  Pattern By User Predictor 

5.4 The Before Then After Predictor 

The Before-Then-After predictor is both very simple, and very similar to the Pattern predictor.  At 

any given moment in time, we look at the two previous requests.  We then search the history for as 

many occurrences of this size two pattern as possible, and predict the most common thing to follow.  

It is the same as the pattern predictor with a fixed pattern size of two.  If there are no such occurrences 

in the history, we make no prediction. 
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PredictionRate 90% 

SuccessRate10 45% 

WrongRate10 45% 

Accuracy10 50% 

                                       Table 4:  Before then After Predictor 

5.5 Ben’s Predictor 

This predictor is a more complex attempt to predict the next request.  It compares two 

possibilities:  the most common file that followed the current request for all users taken as a whole, 

and the most common file that followed the current request for for currently requesting user.  It 

executes the following steps:  (1) Find the every request of the current file made by the current user 

(2) Find the most common next request by the same user (3) Find the percentage of the most common 

follow-up compared to the total number of requests for the current file. (4) Do the same computation 

globally, ignoring user IDs.  Ben’s predictor predicts whichever prediction has the higher percentage.  

This algorithm has higher rate of predictions, but a lower accuracy than the Pattern predictor. 

 

PredictionRate 81% 

SuccessRate10 48% 

WrongRate10 33% 

Accuracy10 60% 

                                       Table 5: Ben's Predictor 

5.6 Luke’s Voting Algorithm 

Ensemble, voting prediction algorithms are known to often perform better than their component 

parts[9].   Even the famous Netflix prize was won by a voting algorithm[11]. Our voting algorithm 

works by taking the votes cast by the other predictors described above and finding the most common 

one between them.  This simple majority voting algorithm is the best performing voting algorithm of 

the many ones we tried.   

Note that this algorithm will make a prediction if any of the constituent algorithms described 

above makes a prediction, thus the very high prediction rate.  We also tested a variant of this 

ensemble algorithm that allowed each of the constituent algorithms to vote “no prediction” and would 

consider that as the possible final answer if “no prediction” gained the most votes.  To our surprise, 

this modification showed a reduction in both PredictionRate and Accuracy10, and is therefore strictly 

inferior to the unmodified algorithm. 

 

PredictionRate 91% 

SuccessRate10 67% 

WrongRate10 24% 
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Accuracy10 75% 

                                       Table 6: Luke's Voting Algorithm 

6 Conclusion 

After reviewing our findings it is clear that there is a significant performance increase to be found 

from intelligent prefetching of web resources. 

Luke’s Voting Algorithm and the Pattern Predictor stood out among all predictors. The Pattern 

Predictor had a prediction rate of 69%, and of them 78% were correct.  It therefore predicted 55% of 

all requested files.  Luke’s Voting Algorithm has a prediction rate at 91%, and 75% of them were 

correct.  It therefore predicted 67% of all requested files. This represents a tradeoff between prediction 

accuracy and having a high prediction rate. Overall Luke’s Voting Algorithm best fits our criteria, 

offering the highest prediction rate with only a very minimal decrease in accuracy compared to the 

Pattern Predictor. 
Using Luke’s Voting Algorithm will allow a web server to predict which files a web client will 

use, send the predicted files to the web client before the client asks for them, and do so with high 

probability (~75%) that the file will actually be needed.  The web server can do this any time there is 

unused bandwidth between the client and server, and for typical networks this is very often.  Doing so 

will substantially improve web performance 
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