Acceleration-based safety decision procedure for programs
with arrays

Francesco Alberti!, Silvio Ghilardi?, Natasha Sharygina!l

! University of Lugano, Lugano, Switzerland
2 Universita degli Studi di Milano, Milan, Ttaly

Abstract

Reachability analysis of programs with arrays is a well-known challenging problem and many existing
approaches are bound to incomplete solutions. In this paper we identify a class of programs with arrays
for which safety is fully decidable. The completeness result we provide is built up from acceleration
techniques for arrays and the decision procedure for the Array Property Fragment class.

1 Introduction

Reachability analysis plays a crucial role in program verification. It relies on algorithms for
computing a fixed point of the transition relation representing the program body and checking
if any execution leads to the violation of a given property. The main weakness of reachability
analysis is that the fixed point computation, which is required for determining the unreachability
of erroneous configurations, is intractable in general. This implies that most procedures dealing
with the verification of safety properties of programs can be, at most, sound, but in general still
incomplete or non-terminating. Completeness of the required satisfiability tests and termination
of the whole procedure can be achieved only by constraining the class of systems under analysis.
This paper addresses this challenge in the context of programs handling arrays, by identifying
a class of them for which reachability analysis is complete and terminating.

More precisely, in this paper we consider programs handling arrays of unknown length.
Recently it has been shown (see [4]) that accelerations of a wide class of ground transitions over
arrays and counters can be defined in Presburger arithmetic enriched with free function symbols.
Definability of accelerations of such relations does not come for free, though. The price to pay is
admitting nested quantifiers in the accelerated transitions and, as a consequence, in the formulae
used to symbolically describe sets of states reachable by the program. The presence of such
quantifiers has the drawback of keeping completeness of satisfiability tests still unachievable in
the general case.

In this paper we pursue the line of research of |4] and focus on identifying a clear set of
transition relations for which acceleration, despite requiring alternation of quantifiers to be
defined, can be exploited to achieve the completeness of the reachability analysis, by using
well-known decidability results on quantified fragments for theories of arrays (e.g., [10]).

The contribution of the paper is, therefore, the identification of a class of programs with
arrays of unknown length for which the unbounded reachability analysis problem is decidable.
We call this class basic-flat-programs. The method we use for showing these decidability re-
sults is similar to a classical method adopted in the model-checking literature for programs
manipulating integer variables (see for instance [9,|12}14]): we first assume flatness conditions
on the control flow graph of the program and then we assume that transitions labeling cycles
are “accelerable”. Such transitions consists on assignments admitting definable acceleration in
the theory of Presburger arithmetic enriched with free function symbols. Completeness and
termination results on the reachability analysis of these programs are achieved by applying

K. Mcmillan, A. Middeldorp, G. Sutcliffe, A. Voronkov (eds.), LPAR-19 (EPiC Series, vol. 26), pp. 1 1

Acceleration-based safety decision procedure for programs with arrays F. Alberti, S. Ghilardi, N. Sharygina

a preprocessing test in charge of reducing the original program to an “accelerated” program,
where all the relations encoding loops are accelerated. Given an accelerated basic-flat-program,
the reachability of an error configuration can be checked by testing the satisfiability of finitely
many proof-obligations, which are formulee admitting a decision procedure.

Related work This paper identifies a class of programs with arrays for which safety can
be fully decided. This is in sharp contrast with other solutions for analysis of programs with
arrays, which, while focusing (at most) on soundness of their results, sacrifice completeness
and/or termination of their procedures for generality (e.g., [2,6,/13}/15,/19]).

The closest solution to our contribution is presented in [4], although in [4] the focus is on
the combination of acceleration and abstraction. Even in this case, the provided solution is
sound but it is not guaranteed to terminate. The completeness result we provide in this paper
goes over the borders of the one studied in [1L[11] because this work considers arrays indexed by
full Presburger arithmetic. The lack of a full decidability result distinguishes as well our work
from other automata-based solutions [7] for the verification of programs with arrays.

Broadening the borders of related work, we acknowledge the work of Bozga et al. [8] on the
definability of the accelerations of relations over integers in Presburger arithmetic. Recently,
acceleration has been integrated in refinement procedures for the verification of integer programs
to generate inductive loop invariants from interpolants [17]. Kroening et al. describe in [1§]
how to generate sound under-approximations of loops in C programs with bit-vector semantics
with the goal of gaining a speed-up in finding deep counterexamples. Such technique does not
involve fixed-point detection, therefore cannot be complete. Acceleration has been successfully
adopted also in other application domains: besides reachability analysis of integer variables
programs [9,12)14], acceleration plays e.g. an important role in the system UPPAAL for reducing
the fragmentation problem |[5].

Plan of the paper In Section [2] we fix some notation and in Section [3] we introduce a formal
model for array programs. In Section [4] we discuss acceleration of a special class of transitions,
called basic-assignments; we finally use definability of accelerated basic-assignments in the array
property fragment of [10] to obtain our main decidability result. We conclude in Section

2 Preliminaries

We work in Presburger arithmetic enriched with free function symbols and with definable
function symbols (see below); when we speak about validity or satisfiability of a formula, we
mean satisfiability and validity in all structures having the standard structure of natural numbers
as reduct. Thus, satisfiability is decidable if we limit to quantifier-free formule (by adapting
Nelson-Oppen combination results [204/22]), but may become undecidable otherwise (because
of the presence of free function symbols).

We use x,y,z,... or 4,4, k,... for variables; t,u,... for terms, c¢,d,... for free constants,
a, b, ... for free function symbols, ¢, v, ... for quantifier-free formulse. Bold letters are used for
tuples and |- | indicates tuples length; hence for instance u indicates a tuple of terms w1, . .., U,
where m = |u|. These tuples may contain repetitions. For variables, we use underlined letters
z,Y,...,4,7,... to indicate tuples without repetitions. Vector notation can also be used for
equalities: if u = u1,...,u, and v = vq,...,v,, Wwe may use u = v to mean the formula
Nizy i = vi-

If we write t(z1,...,2,),u(z1,...,2s),d(x1,...,2,) (or t(z),u(z), p(z),..., in case £ =
Z1,...,%n), we mean that the term ¢, the tuple of terms u, the quantifier-free formula ¢ contain

Acceleration-based safety decision procedure for programs with arrays F. Alberti, S. Ghilardi, N. Sharygina

variables only from the tuple x1,...,z,. Similarly, we may use t(a,c,z), ¢(a,c,x),... to mean
both that the term ¢ or the quantifier-free formula ¢ have free variables included in x and
that the free function symbols and constants occurring in them are among a,c. Notations
like t(u/z), p(u/x),... or t(uy/x1,.. ., un/Tyn), P(u1/x1, ..., Un/Ty),... - or occasionally just
t(u), ¢(u), ... if confusion does not arise - are used for simultaneous substitutions within terms
and formulee. If a is a unary free function symbol and ¢ a term, we may write a[t] instead of
a(t).

By a definable function symbol, we mean the following. Take a quantifier-free formula ¢(j,)
such that V§3lyé(4, y) is valid (3ly stands for ‘there is a unique y such that ..."). Then a definable
function symbol F (defined by ¢) is a fresh function symbol, matching the length of j as arity,
which is constrained to be interpreted in such a way that the formula Vy.F(j) =y <—>7<b(J,y) is
true. The addition of definable function symbols does not affect decidability of quantifier-free
formulze and can be used for various purposes, like directly expressing case-defined functions,
array updates, etc. For instance, if a is a unary free function symbol, the term wr(a,i,x)
(expressing the update of the array a at position i by over-writing x) is a definable function;
formally, we have j :=i,z,j and ¢(j,y) is given by (j =iAy=2)V (j #i Ay =a(j)). This
formula ¢(j,y) (and similar ones) is usually written as

y = (if j =1 then = else a(j))

to improve readability. As further examples of definable function symbols one may consider (in
Presburger arithmetic) integer quotient and remainder modulo a fixed number n.

3 Array program representation and their safety

To model a program we need to fix program variables and transition relations. Program vari-
ables are a tuple v := a, ¢ (to be fixed from now on), where

- the tuple a = ag, ..., as contains free unary function symbols, i.e., the arrays manipulated by
the program;

- the tuple ¢ = ¢q,...,¢; contains free constants, i.e., the integer data manipulated by the
program;

Transition relations are formule of the kind 7(v,v’) (here v’ are renamed copies of the tuple v
representing the next-state variables).
Sentences denoting sets of states reachable by a program can be:

- ground sentences, i.e., sentences of the kind ¢(a, c);
- YV-sentences, i.e., sentences of the form 3i. ¢(i, a, c);
- X9-sentences, i.e., sentences of the form 3iVvj. ¢(i, j,a,c).

We remark that in our context satisfiability can be fully decided only for ground sentences and
¥9-sentences (by Skolemization, as a consequence of the general combination results [20422]),
while only subclasses of ¥9-sentences enjoy a decision procedure. Of particular interest for
the present paper is the array property fragment which is shown to be decidable in [10]. We
reformulate below the related definition because it is used later; we say that a formula or a
term is arithmetical iff it is built up from variables using only the symbols =, <,+,—,0,1 (in
particular free function symbols do not occur in it).

Definition 3.1 A formula is in the array property fragment [10] iff it is equivalent to a dis-
Junction of formulae of the kind 3i (1(i,a) A -+ Ay, (i,a)), where each 1; is either a literal

3

Acceleration-based safety decision procedure for programs with arrays F. Alberti, S. Ghilardi, N. Sharygina

or a guard. In turn, a guard is a formula of the kind Vj (G — 0), where (i) G is a conjunction
of atoms of the kind j1 < jo,j1 < t(3),t(i) < j1 for j1,j2 € j and t(i) arithmetical; (i) 0 is
obtained from a quantifier-free arithmetical formula a(i, z) by replacing the variables x by terms
of the kind a[t(i)], a[j] for j € j,t(i) arithmetical and a € a.

Transition formulae can also be classified into three groups:

- ground assignments, i.e., transitions of the form
ér(c,a) A a' = \j. G(c,a,j) A ¢’ = H(c,a) (1)
- XV-assignments, i.e., transitions of the form
Jk (¢r(c,a,k) A a' =\j. G(c,a,k,j) A ¢’ =H(c,a,k)) (2)
- ¥9-assignments, i.e., transitions of the form

- <¢>L(c,a,k> A Y Yule,ak,j) A)

L L ®3)
a’'=\j. G(c,a,k,j) N ¢’ = H(c,a,k)

where G = Gy,...,Gs, H = Hy,..., H; are tuples of definable functions (vectors of equa-
tions like a’ Aj. G(c,a,k,j) can be replaced by the corresponding first order sentences

vj /\Z:l a;z(]) Gh(caaakaj))'

3.1 Modeling programs

In this work, programs will be represented by their control-flow automaton.

Definition 3.2 Giving a set of variables v like above, a program is a triple P = (L, A, E),
where (i) L = {l1,...,l,} is a set of program locations among which we distinguish an
initial location lLinx and an error location lewor; (1) A is a finite set of transition formule
{r(v,v"),...,7(v,v')} and (iii) E C L x A x L is a set of actions.

We indicate by sre, £, trg the three projection functions on E; that is, for e = (I;, 75, 1) € E,
we have src(e) = [; (this is called the ‘source’ location of e), L(e) = 7; (this is called the ‘label’
of e) and trg(e) =l (this is called the ‘target’ location of e).

A program path (in short, path) of P = (L, A, E) is a sequence p € E™, i.e., p=e1,€2,...,€n,
such that for every i < n, we have that trg(e;) = src(e;+1). We denote with |p| the length of
the path.

Of particular interest for our work is the class of flat’-programs, i.e., programs admitting
only self-loops for which each location belongs to at most one loop.

Definition 3.3 A program P = (L, A, E) is a flat’-program if for every path p = ey, ..., e, of
P it holds that for every j < k < n, if src(e;) =trg(ey) then e; = ejp1 =+ = ey.

Example 3.1 Consider the procedure init in Figure[ll For this procedure, a = a, ¢ = i,v. N is
a free constant. A is the set of formule (we omit identical updates):

=4 =0

T2i=1< NAa = N.if (j =1i) then v else a[j]Ai =i+1

T3:=4i>NAi =0

Ti=i<NAi =i+1

T5:=1>N

TE =1 < N Aali] #v

Acceleration-based safety decision procedure for programs with arrays F. Alberti, S. Ghilardi, N. Sharygina

procedure init (a[N] , v):
li for(i=0; i< N; i=1i+1) ali] =v;
lp for (i=0; i < N; i =i+ 1) assert(afi] = v);

(a)

Figure 1: The init procedure (a) and its control-flow graph (b).

The procedure init can be formalized as the control-flow graph depicted in Figure (b), where
L= {linih lla 127 l37 lerror}'

3.2 The reachability problem

Definition 3.4 An error path in a program P = (L,A,E) is a path p = e1,ea,...,e, with
sre(er) = line and trg(en) = lewor- A path p is a feasible path if /\‘jp:‘1 E(ej)(j) 1s satisfiable,
where L(e;)V) represents Ti; (vU=D V@), with L(e;) = i, -

The (unbounded) reachability problem for a program P is to detect if P admits a feasible error
path. Proving the safety of P, therefore, means solving the reachability problem for P. This
problem, given well known limiting results, is not decidable for any program P. The consequence
is that, in general, any reachability analysis is sound, but not complete, and its incompleteness
manifests itself in (possible) divergence of the verification algorithm.

The problem, in our context, is generated by loops, which give rise to possibly infinite
error paths to check. Focusing our attention only on flat’-programs, the application of an
acceleration procedure may help in limiting divergence since it would substitute each loop with
its accelerated form. Leveraging the accelerated transitions, one can compute in one shot the
set of reachable states after n unwindings of the corresponding loop, for any n. This prevents
the divergence of the reachability analysis caused by considering always deeper unwindings.

4 Deciding the safety of basic-flat-programs

‘We recall the definition of an accelerated transition:

Definition 4.1 The composition 71 o 79 of two transitions 71(v,v') and 1o(v, V') is expressed
by the formula 3vyi(m1(v,v1) A 12(v1,V")) The n-th composition of a transition T(v,v') with
itself is recursively defined by 7' := 7 and 7" := 707", The acceleration 7 of 7 is \/, -, T".

In general, acceleration requires a logic supporting infinite disjunctions, but it has been
shown in [4] that infinite disjunctions (which anyhow are a formalism outside the realm of
first-order logic) are not needed for expressing the acceleration of some ground assignments
involving array variables: their accelerations can be expressed as ¥.9-assignments. However,
the practical advantage of expressing in a first order language the transitive closure of relations
via X9-assignments is limited by the undecidability of satisfiability of ¥9-formulse. Thus, it
will become essential to identify classes of ground assignments whose acceleration belongs to a
decidable class of ¥9-formulze.

Acceleration-based safety decision procedure for programs with arrays F. Alberti, S. Ghilardi, N. Sharygina

4.1 The class of basic-assignments

Next definition aims at identifying a class of transitions whose acceleration fits Definition [3.1

Definition 4.2 A basic-assignment is a ground assignment of the following kind (we split the
scalar variables ¢ as ¢ := d,d to highlight a ‘counter’ d among them):

é1(d,d)Ag%(d,afd]) A d =d+1 A d =d A a =N\if (j =d) then t(d,a[d]) else a[j] (4)

where (i) the tuple of term:ﬂ a[d] stands for ai[d],...,as[d]; (i) t is an s-tuple of terms; (iii)
¢} (d,d), 2 (d,ald]) and t(d,ald]) are obtained from arithmetical ¢} (z,x), ¢% (x,2) and t(x,z)
by replacing x,x,z with d,d, ald], respectively.

The next lemma (an easy special case of a result from [4]) gives the template for the accel-
eration of basic-assignments.

Lemma 4.1. The acceleration of the basic-assignment is equivalent to the formula 77 (v,v’)
given by

(w (@d<j<d+y—op(,d)A¢i(dal]) A d=d+y A d’=dA>
Jy>of 5 77 . . ‘ (5)
a' = \j. (if (d <j<d+y) then t(d,a[j]) else a[j])

Example 4.1 Consider transition T2 from the formalization of our running example in Figure[]]
The acceleration 7'2+ of such formula is

y>0AVz.(i<z<it+y—2z<N)Ai=ityA
Y\ & =j.(if (<j<ity) then v else alj])
The following lemma is crucial for our decidability result:

Lemma 4.2. The formula 18 equivalent to a formula in the array property fragment.
Proof. We need to rewrite a bit. Forgetting about the top existential quantifier, can be
rewritten as the conjunction of the following formulae:

LLy>0 ANd=d+y N d =d;

2.Vj(d<j A j<d+y—1-¢p(j,d));

3.Vj(d<j A j<d+y—1-¢i(dalj);

4 Vj(d<j AN j<d+y—1—afj]=t(dalj]));

5.Vj (j<d—1—a'[j] =alj]);

6. Vj (d+y<j—a[j]=alj])
(notice that in 4-5-6 the equality a’[j] = --- is in fact a conjunction of s equations). The only
conjunct that might give problems with respect to Definition [3.1] is the second one; however
this is a formula in Presburger arithmetic, hence we can apply quantifier elimination to it and
get an equivalent quantifier-free formula of the kind ¢(d,d). This fits Definition (but we

have to introduce extra existentially quantified variables to get rid of the equivalence-modulo-n
predicates that are introduced by quantifier elimination [21]). O

1Recall that in Sectionwe put a:=aj,...,as.

Acceleration-based safety decision procedure for programs with arrays F. Alberti, S. Ghilardi, N. Sharygina

4.2 The Decision Algorithm

We are now ready to identify a class of programs with arrays for which the unbounded reach-
ability problem is decidable. We call these programs basic-flat-programs: basic-flat-programs
are flat®-programs for which every non-loop edge is labeled with a ground or ¥:0-assignment and
every loop edge is labeled with a basic-assignment. In the following, let us modify the projection
function L of a basic-flat-program P = (L, A, E) by denoting LT (e) := L(e)™ if src(e) = trg(e)
and L1 (e) := L(e) otherwise, where L(e)™ denotes the acceleration of the transition labeling
the edge e.

Theorem 4.1. The reachability problem for basic-flat-programs is decidable.

Proof. Let p=eq,...,e, be an error path of a basic-flat-program P; when testing its feasibility,
according to Definition we can limit ourselves to the case in which ey,...,e, are all dis-

tinct, provided we replace the labels £(ej)*) with £ (ex)™*) in the formula A_; £(e;)") from
Definition Thus P is unsafe iff, for some error path ey, ..., e, whose edges are all distinct,
the formula

LY e)V A AL (e,)™ (6)

is satisfiable. Since the paths to be checked are finitely many and since, by lemma for-
mule like @ are equivalent to formulee in the array property fragment (whose satisfiability is
decidable [10]), the safety of P can be decided. O

5 Conclusion and future work

We have proved that the unbounded reachability problem for a class of programs is decidable.
One may wonder how significant is that class. In fact, the class is not that small: intuitively,
it contains programs (without nested loops) implementing functions like searching, comparing,
initializing, testing, etc. for arrays or strings. Our decision procedure relies on the decidability
result for the array fragment considered in [10]; we presume that by our method one can rely on
different decidable array fragments (e.g., [3,16]) and get decidability results for slightly different
classes of programs.

Another question is related to the actual ability of available SMT-Solvers in discharging the
quantified proof obligations @ generated by our decision procedure. Preliminary experimentﬂ
show that the presence of nested quantifiers in such proof obligations constitute a non-trivial
challenge for state-of-the-art SMT-Solvers.

References

[1] F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. Lazy abstraction with
interpolants for arrays. In LPAR, volume 7180 of LNCS, pages 46—61. Springer, 2012.

[2] F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. SAFARI: SMT-Based
Abstraction for Arrays with Interpolants. In CAV, volume 7358 of LNCS, pages 679-685. Springer,
2012.

[3] F. Alberti, S. Ghilardi, and N. Sharygina. Decision procedures for flat array properties. Technical
Report 2013/04, University of Lugano, October 2013. Available at http://www.inf.usi.ch/
research_publication.htm?id=77.

2More information at http://www.inf.usi.ch/phd/alberti/prj/booster.

http://www.inf.usi.ch/research_publication.htm?id=77
http://www.inf.usi.ch/research_publication.htm?id=77
http://www.inf.usi.ch/phd/alberti/prj/booster

Acceleration-based safety decision procedure for programs with arrays F. Alberti, S. Ghilardi, N. Sharygina

(4]

5]

6

7

B

9
[10]
[11]
[12]
[13]
[14]
[15]
[16]
17)
18]
[19]
[20]
[21]

22]

F. Alberti, S. Ghilardi, and N. Sharygina. Definability of accelerated relations in a theory of arrays
and its applications. In FroCoS, volume 8152 of LNCS, pages 23-39. Springer, 2013. Extended
version available at http://www.inf.usi.ch/research_publication.htm?id=71l

G. Behrmann, J. Bengtsson, A. David, K.G. Larsen, P. Pettersson, and W. Yi. UPPAAL imple-
mentation secrets. In FTRTFT, volume 2469 of LNCS, pages 3—22. Springer, 2002.

N. Bjgrner, K.L.. McMillan, and A. Rybalchenko. On solving universally quantified horn clauses.
In SAS, volume 7935 of LNCS, pages 105—125. Springer, 2013.

M. Bozga, P. Habermehl, R. losif, F. Konecny, and T. Vojnar. Automatic verification of integer
array programs. In CAV, volume 5643 of LNCS, pages 157-172. Springer, 2009.

M. Bozga, R. Iosif, and F. Konecny. Fast acceleration of ultimately periodic relations. In CAV,
volume 6174 of LNCS, pages 227-242. Springer, 2010.

M. Bozga, R. Iosif, and Y. Lakhnech. Flat parametric counter automata. Fundamenta Informati-
cae, (91):275-303, 2009.

A.R. Bradley, Z. Manna, and H.B. Sipma. What’s decidable about arrays? In VMCAI, volume
3855 of LNCS, pages 427-442. Springer, 2006.

A. Carioni, S. Ghilardi, and S. Ranise. Automated termination in model-checking modulo theories.
Int. J. Found. Comput. Sci., 24(2):211-232, 2013.

H. Comon and Y. Jurski. Multiple counters automata, safety analysis and Presburger arithmetic.
In CAV, volume 1427 of LNCS, pages 268-279. Springer, 1998.

P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully automatic and
scalable array content analysis. In POPL, pages 105-118. ACM, 2011.

A. Finkel and J. Leroux. How to compose Presburger-accelerations: Applications to broadcast
protocols. In FSTTCS, volume 2556 of LNCS, pages 145-156. Springer, 2002.

P. Garg, C. Loding, P. Madhusudan, and D. Neider. Learning universally quantified invariants of
linear data structures. In CAV, volume 8044 of LNCS, pages 813-829. Springer, 2013.

P. Habermehl, R. Tosif, and T. Vojnar. A logic of singly indexed arrays. In LPAR, volume 5330
of LNCS, pages 558-573. Springer, 2008.

H. Hojjat, R. Iosif, F. Konecny, V. Kuncak, and P. Riimmer. Accelerating interpolants. In ATVA,
volume 7561 of LNCS, pages 187-202. Springer, 2012.

D. Kroening, M. Lewis, and G. Weissenbacher. Under-approximating loops in C programs for fast
counterexample detection. In CAV, volume 8044 of LNCS, pages 381-396, 2013.

D. Larraz, E. Rodriguez-Carbonell, and A. Rubio. SMT-based array invariant generation. In
VMCAI volume 7737 of LNCS, pages 169—188. Springer, 2013.

G. Nelson and D.C. Oppen. Simplification by cooperating decision procedures. ACM Transaction
on Programming Languages and Systems, 1(2):245-257, 1979.

D.C. Oppen. A superexponential upper bound on the complexity of Presburger arithmetic. J.
Comput. System Sci., 16(3):323-332, 1978.

C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson-Oppen combination procedure.
In Proc. of FroCoS 1996, pages 103—-119. Kluwer, 1996.

http://www.inf.usi.ch/research_publication.htm?id=71

	Introduction
	Preliminaries
	Array program representation and their safety
	Modeling programs
	The reachability problem

	Deciding the safety of basic-flat-programs
	The class of basic-assignments
	The Decision Algorithm

	Conclusion and future work

