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Abstract

The near exponential growth in sequence data available to bioinformaticists, and the
emergence of new fields of biological research, continue to fuel an incessant need for in-
creases in sequence alignment performance. Today, more than ever before, bioinformatics
researchers have access to a wide variety of HPC architectures including high core count
Intel Xeon processors and the many-core Intel Xeon Phi.

In this work, the implementation of a distributed, NCBI compliant, BLAST+ (C++
toolkit) code, targeted for multi- and many-core clusters, such as those containing the
Intel Xeon Phi line of products is presented. The solution is robust: distributed BLAST
runs can use the CPU only, the Xeon Phi processor or coprocessor, or both by utilizing
the CPU or Xeon Phi processor plus a Xeon Phi coprocessor. The distributed BLAST
implementation employs static load balancing, fault tolerance, and contention aware I/0.
The distributed BLAST implementation, HPC-BLAST, maintains greater than 90% weak
scaling efficiency on up to 160 Xeon Phi (Knights Landing) nodes.

The source code and instructions, are available under the Apache License, Version 2.0
at https://github.com/UTennessee-JICS/HPC-BLAST.

1 Introduction

Recent advances in sequencing technology (DNA sequencing, amino-acid and protein characteri-
zation, gene expression data, and whole-genome descriptions) are both providing bioinformatics
researchers with a bonanza of biological sequence datasets, and broadening the applications for
sequencing [6, 15, 17, 18, 24, 39, 40, 50, 20, 53, 26]. GenBank, a publicly available sequence
database maintained by NIH, has experienced exponential-like growth [1, 27].

Sequence similarity searching remains among the most important and challenging tasks in
bioinformatics [49, 26, 59]. The Basic Local Alignment Search Tool (BLAST) is the most
popular sequence search and alignment tool in use today [35, 29, 63, 20, 9, 3, 44, 55, 60, 7],
widely adopted for its sensitivity and speed [16]; the seminal papers for BLAST and Position-
Specific Iterated (PST)-BLAST have a combined 129,925 citations [4, 5]. The level of usage for
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BLAST suggests that any improvement to its performance would have a pervasive effect on the
field of bioinformatics [55].

With each passing day, sequential BLAST becomes less able to keep pace with the per-
formance requirements placed upon it by the bioinformatics community. This phenomenon is
described in many different ways. A 2003 study found that searching the GenBank database
requires approximately 64% more time each year, always using current hardware [10]. It is
reported that metagenomics studies can take 800,000 CPU hours, and that BLAST can make
up to 99.97% of that runtime [20, 34, 22]. It is reported that the search speed of BLAST has
become insufficient for the typical metagenomic analysis [53]. Researchers report that the min-
utes required for a single protein search against NCBI’s NR database [57] can be too long to be
practical [54]. People say that biological sequence data is accumulating more quickly than the
growth in computing efficiency predicted by Moore’s Law [8, 16], or that expansion of genetic
sequence information exceeds the growth in computing power available at a constant cost [49].

In the recent past, many classes of BLAST acceleration efforts have occurred. The National
Center for Biotechnology Information (NCBI)-BLAST software supports multithreading in the
preliminary stages of the BLAST algorithm [9]. More recently, the traceback phase of the search
was also parallelized starting with the 2.4.0 version of the toolkit. Others have implemented both
multithreaded and vectorized BLAST algorithms [28, 12, 23]. Many groups have implemented
Field Programmable Gate Array (FPGA) BLAST acceleration [58, 25, 21, 41, 51, 11, 58].
There are BLAST implementations distributed across a cluster [13, 31, 43, 47, 14, 19, 35,
30, 7], distributed using web services [56], and distributed across a grid of clusters [2, 60,
61]. MapReduce implementations of BLAST exist [52, 38, 36]. NCBI maintains a BLAST
server farm, that parallelizes BLAST runs at the job level, scheduling more than 100, 000 jobs
per day [37]. People have accelerated BLAST for the GPU [55, 32, 63, 33], and the Cell
Broadband Engine architecture [62]. In this work, an implementation of a distributed, NCBI
compliant, BLAST+ (C++ toolkit) code intended for use on high core count clusters and
emerging technologies such as the Intel Xeon Phi is presented.

2 Methodology

In this work, a new parallel implementation of the NCBI BLAST search software called HPC-
BLAST is presented. HPC-BLAST is designed to overcome many of the limitations in previous
parallel implementations. Previous distributed implementations, including mpiBlast [13, 47, 30]
and ScalaBlast [43, 44], focused exclusively on scaling through process distribution using the
Message Passing Interface (MPI) library [48]. In the advent of clusters featuring multicore
processors, this approach will not provide optimal performance as compared with a hybrid
approach of using MPI plus a threading scheme such as OpenMP [46]. In this paradigm,
MPI can be used to distribute processes across compute nodes/processors of the cluster and
the threading scheme to distribute computational work at the node/socket level. A hybrid
approach is more amenable to the Xeon Phi which has more logical cores than Xeon processors.
With the hybrid approach, the distribution of ranks and threads can be modified to suit the
particular architecture.

As mentioned, other parallel implementations are designed to batch NCBI BLAST searches
and distribute these tasks across nodes in a cluster or supercomputer [19, 35, 61]. Often,
these implementations utilize a command line tool to break the input queries or database
into separate tasks which are passed to the system’s scheduler to be computed [19, 35, 61].
A particular example of this approach is DC BLAST [61]. An advantage of this approach
is that since the controlling script is separate from the NCBI toolkit, newer versions of the
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Figure 1: Top level task distribution.

NCBI executables can seamlessly be added. Another advantage is that there are no restrictions
made on the users with regard to command line options, such as output format. However, in
[61], there is no mention of splitting the database and only the Swiss-Prot protein database is
used, so that parallelization is made possible only by dividing the queries. This is particularly
limiting when the reference database is large, such as with the full non-redundant databases,
as these databases may not fit into the memory of a single node. This approach also does not
take advantage of the finer-grained parallelism that can be achieved by parallelizing within the
NCBI toolkit code.

A further issue with many parallel implementations is that they use the older C version
of the BLAST toolkit. HPC-BLAST is built using the newer C4++ BLAST toolkit. As such,
HPC-BLAST is able to benefit from future improvements to the underlying BLAST source code
released by NCBI.

3 Design

HPC-BLAST uses a two-level hierarchical design to efficiently distribute search tasks across
MPI processes and threads; a top level where tasks are distributed across processes and a
low level where tasks are distributed across threads to each process. At the process level, an
HPC-BLAST search can be distributed amongst MPI processes by partitioning the queries and
the database provided as input to the search. For instance, partitioning the queries into 2
partitions, and partitioning the database into 4 partitions, would result in 8 MPI processes,
each executing an HPC-BLAST search using a unique query-partition database-partition pair,
as depicted in Figure 1. Many parallel BLAST implementations, including mpiBLAST [13, 47]
and ScalaBLAST [43] use a conceptually similar approach.

At a conceptual level above the process level, there is the notion of a replication group. If,
for example, the queries are partitioned into two partitions and the database is partitioned into
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Figure 2: Process level task distribution.

four partitions, then the group of database partitions that will be searched against by query
partition one, is a replication group. It is called a group because it is a group of database
partitions. A characteristic of a replication group is that it contains every sequence in the full
database. The group of database partitions that will be searched against by query partition two,
is also a replication group. It consists of the same database sequences that are in replication
group one, but it is thought of as a second replication group. The replication group view
can also be seen in Figure 1, where there are two replication groups, each with the same four
database partitions.

Just like at the MPI level, an HPC-BLAST search can be parallelized at the thread level,
amongst OpenMP threads, by partitioning the queries and the database that was assigned from
the process level. This second level of the hierarchy is unique to HPC-BLAST, increasing the
amount of parallelization. As an example, partitioning the queries into two partitions, and par-
titioning the database into two partitions, would result in four OpenMP threads, each executing
a distinct NCBI-BLAST search instantiation, using a unique query-partition, database-partition
pair. The thread level is depicted in Figure 2 which shows, as an example, a number of database
partitions and a number of query partitions.

Analogous to the process level, there is one thread per database partition. This collection of
threads is known as a thread group. If there are multiple query partitions, there will be multiple
thread groups, one per query partition. Each thread group searches the same partitions of the
database, but with a different query partition. Each thread inside a query group will execute
an NCBI-BLAST search with a unique query-partition, database-partition pair. A given thread
inside a query group is called a team leader. This is because the NCBI-BLAST search itself
can spawn additional threads during its execution. In version 2.2.31, blastp searches could be
parallelized by threads during the preliminary search phases.

4 Implementation

HPC-BLAST was designed with the goal of leveraging the ideas of previous successful parallel
implementations but adapted towards multi- and many-core CPU systems. Most modern CPUs,
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including consumer variants, have several to tens of cores, and server CPUs are expected to reach
hundreds of cores in the near future. One mechanism of parallelization, generally referred to as
coarse-grained parallelization, is to map the MPI ranks to CPU cores. Search tasks can then
be distributed to the MPI ranks. This is not always an ideal way to distribute work since each
MPI process has a separate address space for memory. This has several implications including
increased memory requirements since each process needs to have a copy of the executable in
memory and requiring that each rank would need a copy of the database in its memory space.

HPC-BLAST addresses the limitations of a purely MPI parallel approach to task distribution
by the use of OpenMP threads as discussed in its design. The threading model allows for better
utilization of resources. Since threads share a common memory address space, a single copy of
the database can be used by multiple threads within a single MPI rank. Another performance
benefit seen on multi- and many-core CPUs where cores share cache is an improvement in
throughput, particularly when the threads are used to distribute the query sequences. In this
scenario, different thread groups scan through the same database. Once one thread group has
loaded a subject sequence, subsequent requests for the same sequence from other thread groups
may be serviced from cache rather than main memory, as long as the data is resident in the
cache.

It is worth noting that NCBI BLAST does include multithreading support. But as of re-
lease version 2.2.31, the threads are limited to only the initial part of the search algorithm.
Development of HPC-BLAST used the most recent version of the NCBI toolkit (2.2.31) when
initially designed, tested, and benchmarked. However, HPC-BLASTp has subsequently mi-
grated to NCBI toolkit release 2.7.1. The OpenMP threads used by HPC-BLAST allow for
greater concurrency since these threads are parallelizing the entire search; and, as indicated
above, HPC-BLAST allows for the use of both the OpenMP threads and the native NCBI
BLAST search threads simultaneously.

At the conclusion of a search iteration through the BLAST algorithm, the results are dis-
tributed among the different HPC-BLAST threads. Initially, HPC-BLAST, denoted as version
0.5, allowed each thread to create a unique output file. In a separate post-processing step, the
collective output was merged and sorted so that the results were presented in a single output
file with the default pairwise alignment format. This solution could result in placing undue
pressure on a parallel filesystem when the number of HPC-BLAST threads exceed several tens
of thousands. To address this, in release 1.0 of HPC-BLAST, a single thread per MPI process is
designated as the writer for that process. At the end of a search iteration, the threads coopera-
tively aggregate their search results into a single data structure mimicking how the NCBI search
threads merge their results. The post-processing step then only has to merge results from the
different MPI processes. If each process has a complete copy of the database, the outputs from
each process will be disjoint with respect to the queries. In this case, the behavior is like that
of running many BLAST jobs in a batched environment and is similar to other results [14, 35].

5 Results

Several benchmarking tests were conducted to study the scaling of HPC-BLAST relative to
NCBI-BLAST on several different architectures including Intel Xeon processors (Sandy Bridge
and Skylake varieties) and the many-core Intel Xeon Phi (Knights Corner (KNC) and Knights
Landing(KNL)). For the tests, the reference database used was a partition of the non-redundant
protein database (nr) containing 2,993,096 sequences and 1,001,005,291 total residues. The
query input consisted of 1058 sequences totaling 350,276 residues randomly sampled from the
subject database. The remaining technical specifications are given in Table 1.



HPC-BLAST Sawyer, Horton, Burdyshaw, Brook, and Rekapalli

NCBI BLAST+ version 2.2.31.

Intel Compiler versions 2016.3.210 and 2017.2.174.
Intel MPI version 5.1.3.210 and 2017.2.174.

Intel MPSS Stack version 3.7 (for KNC).

Sandy Bridge model E5-2670.

Skylake Gold 6148 model.

Xeon Phi KNC model 5110P.

Xeon Phi KNL model 7210.

Table 1: Technical Specifications.

The initial tests were strong scaling tests restricted to one node of an HPC cluster [42], but
using the different listed architectures. A full suite of tests was conducted varying parameters
including number of database partitions, number of replication groups, number of thread groups,
and number of NCBI search threads used. In order to present the trends in a clear fashion,
only two configurations are presented: 6 total MPI processes with 2 replication groups and
8 total MPI processes with 2 replication groups; the two combinations that showed greatest
performance. This leads to 3 and 4 database partitions, respectively. In the strong scaling
tests, the total number of threads is increased. For each of these two configurations, there
are several ways to distribute the threads between thread groups and NCBI search threads.
For instance, given a total of 16 threads, threads could be allocated as such: 8 for thread
groups and allow each to have 2 NCBI search threads. Or, 4 thread groups with 4 NCBI
search threads. The allocations simply need to be a factorization of the total desired thread
count. For clarity, the thread distribution for a given total thread count that represents the
best performance is reported. All reported tests demonstrate the performance of the 1.0 version
of HPC-BLAST where, as discussed in the Implementation section, processes aggregate search
data before writing to disk. This in situ aggregation imparts minimal runtime cost relative to
the 0.5 version of the software. In all observed trials, the performance impact did not exceed
5% of total runtime. All the performance plots show speedup of HPC-BLASTp relative to the
runtime of NCBI BLASTp (2.2.31) using a single search thread on the same architecture, unless
otherwise noted.

The first two architectures examined were the Intel Xeon Sandy Bridge and Skylake pro-
cessors. The compute nodes used for each processor had dual sockets. For the Sandy Bridge,
a total of 16 physical cores and 32 logical cores were available. For the Skylake platform,
each physical CPU socket has 20 physical and 40 logical cores available. The speedup plot
for the Sandy Bridge processors is shown in Figure 3. Using all logical cores on the system,
HPC-BLAST is able to out-perform NCBI BLAST by 60%. The performance difference on the
Skylake processors is even more marked when compared with NCBI 2.2.31 as shown in Figure 4.
Here, the performance advantage of HPC-BLAST is nearly double compared to NCBI BLAST,
when comparing the 2.2.31 version of the toolkit. NCBI 2.7.1 shows great improvement itself
relative to the 2.2.31 release, gaining nearly twice the speedup. However, HPC-BLASTp has
greater speedup than the NCBI 2.7.1, even when using the older toolkit.

The impact of the additional parallelization in the traceback phase of the search in the
NCBI 2.7.1 release was studied in HPC-BLAST. For this experiment, a configuration of 4 MPI
ranks with 2 replication groups was used. Scaling tests were done with 1 NCBI search thread
and 4 NCBI search threads, i.e. setting —num_threads [1,4]. The speedup performance seen
in Figure 5 shows that there is some benefit to using some number of NCBI search threads in
the total thread distribution. This is in contrast to HPC-BLAST with the 2.2.31 toolkit which
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HPC-BLAST (BLAST+ 2.2.31): Performance on Sandy Bridge
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Figure 3: Comparison of strong scaling on a pair of Intel Xeon Sandy Bridge processors.

HPC-BLAST (BLAST+ 2.2.31): Performance on Production Skylake
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Figure 4: Comparison of strong scaling on a pair of Intel Xeon Skylake processors.

did not see benefit from these serach threads in testing.

The performance of HPC-BLAST was also investigated on the Intel Xeon Phi line of copro-
cessors and processors. As compared to the Xeon family of processors, the Xeon Phi architecture
features many more cores, albeit ones that are generally clocked slower and possesses less tran-
sistor real estate for serial processing tasks. The Xeon Phis are intended for highly vectorizable
code and parallel computation tasks that are common in traditional HPC applications. Al-
though the BLAST algorithm is not a good candidate for vectorization, the highly parallel
nature of the search tasks are suitable for the Xeon Phi architecture. The scaling results for the
KNC coprocessor demonstrate a nearly 4 times performance improvement compared to NCBI
BLAST as seen in Figure 6. The second generation Intel Xeon Phi, KNL product line, provides
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HPC-BLAST (BLAST+ 2.7.1): Comparison of Search Threads
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Figure 5: Comparison of speedup on a pair of Intel Xeon Skylake processors relative to search
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Figure 6: Comparison of strong scaling on an Intel Xeon Phi (KNC) coprocessor.

better serial processing capabilities and faster clock speeds. While these improvements lessen
the performance gap as compared to the KNC, HPC-BLASTDp is still able to achieve roughly 3
times speedup over NCBI BLAST as demonstrated in Figure 7.

An interesting observation is that HPC-BLAST continues to scale even when the number

of threads exceeds the number of physical cores.

There are two factors that contribute to

the observed scaling. First, NCBI blast searches exhibit more memory-bound behavior than
compute-bound behavior. Because of this, when two threads are scheduled on the same physical
core but different logical cores, one thread may proceed execution in the pipeline even as the
other thread is waiting for a memory access to be fulfilled. A second factor is that the OpenMP
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HPC-BLAST Performance on KNL
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Figure 7: Comparison of strong scaling on an Intel Xeon Phi (KNL) processor.

threads perform independent NCBI BLAST searches while sharing access to the same reference
database, providing increased parallelization throughout the search while not scaling memory
requirements.

A weak scaling performance test was conducted on the Percival supercomputer [45] which
features the Intel Xeon Phi processor (Knights Landing). The weak scaling test was devised
as follows. The initial performance was measured on a single node. The same query input and
database files from the strong scaling tests are used. A total of 6 MPI processes were launched
with the processes being split into 2 replication groups. Each rank then spawned 40 thread
groups. Thus, a total of 240 threads were searching concurrently on the node. The search was
performed on a variety of node counts. Each node received the same query input file as to
ensure that each node was performing the same amount of computational work. Figure 8 shows
the parallel efficiency of HPC-BLASTp on the Percival supercomputer. As HPC-BLASTp
in its current implementation does not perform result agglomeration between processes, it is
expected that the parallel efficiency would remain above 90%, even if the number of nodes
increases significantly, as almost no additional costs are incurred from MPI communication.

6 Conclusions

HPC-BLAST is designed to achieve high performance and excellent scaling on modern processor
architectures featuring high core counts. This goal has been validated by strong scaling results
showing performance improvements relative to NCBI BLAST on a variety of Intel architectures
and by a weak scaling test demonstrating capability to run on up to 160 Xeon Phi nodes.

The are several directions for taking HPC-BLAST forward. Only the protein-to-protein
(blastp) search variant has been extensively tested. Implementing the HPC-BLAST model in
all blast search strategies is of interest.

The 1.0 release of HPC-BLAST uses a static scheme to partition the input queries among
the MPI processes and thread groups. Moving forward, the development of a dynamic load
balancing strategy would allow for greater performance by parceling out search tasks as pro-

9



HPC-BLAST Sawyer, Horton, Burdyshaw, Brook, and Rekapalli

HPC-BLAST 1.0 Weak Scaling on Percival (KNL)
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Figure 8: Weak scaling plot on the Percival supercomputer.

cesses become idle. This would also increase usability as end users would not be required to
preprocess the input queries to achieve optimal performance.

Currently, the result aggregation has only been tested with the default pairwise alignment
output format supported by NCBI BLAST. A strategy worth investigating is to look at an
intermediate form of search results that can be communicated among processes so that fewer
processes are responsible for writing output. In this manner, dedicated writing processes could
operate concurrently with search processes so that both tasks execute in parallel.

7 Availability

HPC-BLAST is released under the Apache Software License 2.0 and is available at the following
GitHub repository: https://github.com/UTennessee-JICS/HPC-BLAST.
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