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Abstract

Tool Presentation: Computing guaranteed bounds of function outputs when their input
variables are bounded by intervals is an essential technique for many formal methods. Due
to the importance of bounding function outputs, several techniques have been proposed
for this problem, such as interval arithmetic, affine arithmetic, and Taylor models. While
all methods provide guaranteed bounds, it is typically unknown to a formal verification
tool which approach is best suitable for a given problem. For this reason, we present an
implementation of the aforementioned techniques in our MATLAB tool CORA so that
advantages and disadvantages of different techniques can be quickly explored without hav-
ing to compile code. In this work we present the implementation of Taylor models and
affine arithmetic; our interval arithmetic implementation has already been published. We
evaluate the performance of our implementation using a set of benchmarks against Flow*
and INTLAB. To the best of our knowledge, we have also evaluated for the first time how
a combination of interval arithmetic and Taylor models performs: our results indicate that
this combination is faster and more accurate than only using Taylor models.

1 Introduction

Providing guaranteed bounds of multi-dimensional functions r = f(x) (f : Rn → R
m) subject

to inputs x ∈ [x, x], x ≤ x, x, x ∈ R
n bounded by a multi-dimensional interval is essential in

many formal verification techniques. For instance, in [45], the error of an approximate solution
of ordinary differential equations is obtained from function bounds. In [12, 14, 35, 43], bounds
on functions are used to compute reachable sets via Picard iteration or a truncated Lie series in
combination with computing guaranteed bounds of functions. The remainder of Taylor series
is computed in [2, 23, 24] to abstract arbitrary differential equations to polynomial differential
equations for reachability analysis. The Jacobian of linearized systems is bounded in [20]
to compute reachable sets. Other approaches for reachability analysis use interval constraint
propagation [27, 44]. A combination of Taylor models with SAT solving is presented in [19].
Function values are also bounded for verified runtime validation [36, Sec. 3.2]. Further tools
requiring bounds of functions can be found in [4, 13, 47].
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Due to the importance of being able to bound values of arbitrary functions r = f(x), many
techniques have been developed for this problem. Among them are interval arithmetic [26],
generalized interval arithmetic [22], affine arithmetic [17], and Taylor models [9, 18]. Since
generalized interval arithmetic and affine arithmetic are conceptually identical [17, Sec. 5],
we will only consider affine arithmetic from now on. The most general technique for inputs
bounded by intervals are Taylor models since interval arithmetic is a zeroth-order Taylor model
and affine arithmetic is a first-order Taylor model when the inputs are bounded by intervals.
In general, interval arithmetic is the fastest technique, but it typically results in the largest
over-approximation. On the other end are Taylor models, which typically require the most
computation time, but typically provide the tightest solutions. However, there exist rather
many cases in which interval arithmetic provides tighter results [41]. Affine arithmetic is in most
cases a good compromise between interval arithmetic (efficiency) and Taylor models (accuracy).

Taylor models cannot be directly evaluated as it is done in interval arithmetic or affine arith-
metic. For this reason, we present the implementation of different techniques to obtain the
bounds of Taylor models in CORA [3, 5]. Not only is it unclear for a given problem whether
interval arithmetic, affine arithmetic, or Taylor models provide a tighter bound—it is also un-
known what Taylor model evaluation technique is best for a given problem [41, Sec. 4]. This
motivated us to introduce the method zoo, which evaluates several techniques in parallel and
then intersects all results. While this method is quite trivial, we obtained superior results and
can show that a mix of methods is faster and more precise than using Taylor models with
high accuracy, which are slower and less precise in our tested examples. Our evaluation is
performed on examples taken from [25] to remove bias from choosing the examples consid-
ered. We also compare our results with the established tools Flow* [12] for Taylor models and
INTLAB [46] for interval arithmetic. Please note that Flow* has been primarily designed for
reachability analysis and not for bounding function values. Another work that has compared
interval arithmetic, affine arithmetic, and Taylor models is [38], but this work investigated
whether other useful representations exist theoretically (e.g., a combination of trigonometric
functions), without comparing the methods experimentally. A further work compared Taylor
models with centered and mean value forms [32], but this work has evaluated the performance
on rather small input uncertainties, while reachability analysis typically evaluates larger input
uncertainties.

This paper is organized as follows: Sec. 2 defines Taylor models and how to perform operations
on them. Affine arithmetic is presented in Sec. 3. In Sec. 4 we detail our implementation in
CORA. We evaluate the implemented methods in Sec. 5 and also compare the performance
with Flow* and INTLAB. Sec. 6 provides some final conclusions.

2 Taylor Models

In this section we briefly recall Taylor models [9, 31, 32, 35]. An earlier development of Taylor
models, which was not introduced under that name can be found in [18]. Taylor models are
implemented in the tools Flow* [11, 12], COSY INFINITY [34], and Ariadne [7, 8]; the imple-
mentation of Taylor models in Ariadne is additionally validated in Coq [15]. Other tools also
use concepts from Taylor models, such as VNODE-LP [37].

To define Taylor models, we first introduce an n-dimensional interval [x] := [x, x], ∀i : xi ≤ xi,
x, x ∈ R

n and define Taylor polynomials:
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Definition 1 (Taylor polynomial (see Sec. 3 in [40])). Let us first introduce the multi-index set

Lq =
{

(l1, l2, . . . , ln)
∣
∣
∣li ∈ N,

n∑

i=1

li ≤ q
}

.

We define P q(x− x0) as the q-th order Taylor polynomial of f(x) around x0 (x, x0 ∈ R
n):

P q(x− x0) =
∑

l∈Lq

(x1 − x0,1)
l1 . . . (xn − x0,n)

ln

l1! . . . ln!

(

∂l1+...+lnf(x)

∂xl1
1 . . . ∂xln

n

)∣
∣
∣
∣
∣
x=x0

. (1)

Definition 2 (Taylor model (see Def. 1 in [32])). Let f : R
n → R

m be a function that is
(q + 1) times continuously differentiable in an open set containing the n-dimensional interval
[x]. Given P q(x − x0) as the q-th order Taylor polynomial of f(x) around x0 ∈ [x], we choose
an n-dimensional interval [I] such that

∀x ∈ [x] : f(x) ∈ P q(x− x0) + [I]. (2)

The pair T = (P q(x − x0), I) is called an q-th order Taylor model of f(x) around x0.

From now on we use the shorthand notation (P, I), and we omit q, x, and x0 when it is self-
evident. Further information can be found in [31, Sec. 2]. An illustration of a fourth-order
Taylor model is shown in Fig. 1 for r = cos(x) and the range [x] = [−π/3, π/2].
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P q(x− x0) + I

P q(x− x0) + I

Figure 1: Fourth-order Taylor model for cos(x) and [x] = [−π/3, π/2].
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2.1 Scalar Operations

Since Taylor models are essentially polynomials with an interval uncertainty, one requires in-
terval arithmetic to perform operations on Taylor models. We briefly recall interval arithmetic
and refer to [5] for information on its implementation in CORA. Binary operations typically
required for scalar intervals are addition, subtraction, multiplication, and division:

[x] + [y] = [x+ y, x+ y],

[x]− [y] = [x− y, x− y],

[x] · [y] = [min(xy, xy, xy, xy),max(xy, xy, xy, xy)].

[x]/[y] = [x] · (1/[y]), [1]/[y] =







∅ if y = [0, 0],

[1/y, 1/y] if 0 /∈ [y],

[1/y,∞[ if (y = 0) ∧ (y > 0),

]−∞, 1/y] if (y < 0) ∧ (y = 0),

]−∞,∞[ if (y < 0) ∧ (y > 0).

(3)

Similarly, bounds on standard functions, such as sin([x]) can be obtained [5]. Interval arithmetic
treats each variable as an independent entity, causing over-approximative results. For instance,
the intervals in the expression [x]− [x] are treated independently as

[x]− [x] = {x1 ∈ [x]} − {x2 ∈ [x]} = [x− x, x− x] 6= 0. (4)

This phenomenon is often referred to as the dependency problem [26, Sec. 2.2.3]. Taylor models
are particularly designed to address the dependency problem. Due to the use of polynomials,
dependent variables are considered by so-called cancellation effects [41, Sec. 12]. Let us first
introduce the polynomials P1 and P2 (both of order q), the remaining part Pr of the polynomial
P1 ·P2 including terms of orders 0 to q, and the cut-off part Pc of the polynomial P1 ·P2 including
terms of orders q + 1 to 2q. We also require the operator

B(P q(x− x0)) = [min
x∈[x]

P q(x − x0),max
x∈[x]

P q(x − x0)] (5)

returning an over-approximation of the exact bounds. Let us further introduce cf = f(x0) and

T̃ = T − cf . Addition, subtraction, multiplication, and division are computed for T1 = (P1, I1)
and T2 = (P2, I2), and constants α, β ∈ R as [32, Sec. 2]:

αT1 + βT2 = (αP1 + βP2, α[I1] + β[I2]), (6)

αT1 − βT2 = (αP1 − βP2, α[I1]− β[I2]), (7)

T1 · T2 = (Pr, B(Pc) +B(P1) · I2 +B(P2) · I1 + I1 · I2), (8)

T1

T2
= T1 ·

( 1

T2

)

, (9)

1

T
=

1

cf

[

1− T̃

cf
+

T̃ 2

c2f
. . .+ (−1)q T̃

q

cqf

]

+ (−1)q+1B(T̃ )q+1

cq+2
f

1
(

1 + [0, 1] · B(T̃ )
cf

)q+2 .

(10)

Please note that 1/T as well as [1]/[y] is only defined if the division by zero is excluded. We
have improved the computation of 1/T as presented in Appendix B. It is now obvious that the
previous example [x]− [x] = 0 returns the exact result due to cancellations of polynomials.
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Unary operations, such as ex, sin(x), etc. are handled similarly. A list of unary operations
implemented in CORA can be found in Appendix A. Obviously, interval arithmetic is identical
to Taylor models of zeroth order. It remains to compute B(·), which is addressed subsequently.

2.2 Conversion of an Interval to a Taylor Model

Converting an interval to a Taylor model is trivial [39, Sec. 2.4]. A Taylor model T of an interval
[a] is

T = P (x) + I = 0.5(a+ a) + 0.5(a− a)x+ [0, 0], where x ∈ [−1, 1]. (11)

Using the above conversion with x ∈ [−1, 1] has the effect that all operations result in Taylor
models whose variables are also bounded by [−1, 1] (ranges of variables are not affected by
operations on them). This does not only simplify the implementation since ranges do not
have to be stored, but also provides tighter over-approximations (see Sec. 2.3.1). The positive
effects of a so-called centered form or mean-value form have been well studied, but mostly for
polynomials of order 1 [1,28]. From now on, we refer to Taylor models with [x] = [−1,1], where
1 is a vector of ones of proper dimension, as normalized Taylor models.

2.3 Over-approximation of Bounds

In contrast to interval arithmetic and affine arithmetic, Taylor models do not directly provide
a range of possible values. The bounds of a Taylor model T with a polynomial P and interval
[I] can be over-approximated as

B(T ) = B(P ) + [I]

using (5). Several approaches to obtain B(P ) exist, out of which interval arithmetic, branch
and bound, and the LDB/QFB algorithm are currently implemented in CORA.

2.3.1 Interval Arithmetic

Obviously, one can obtain the bounds of a polynomial by interval arithmetic, which is demon-
strated for a polynomial P (x, y) with two arguments:

B
(
P (x, y)

)
=

{

P (x, y) =

n∑

i=0

n∑

j=0

ci,jx
iyj
∣
∣
∣
∣
x ∈ [x, x], y ∈ [y, y]

}

⊆
n∑

i=0

n∑

j=0

ci,j [x, x]
i[y, y]j . (12)

This approach works particularly well for monotone polynomials. To obtain better results, we
compute the bounds from interval arithmetic using the normalized form as demonstrated by
the next example.

Example 1 (Evaluation of original and normalized Taylor model). Let us consider the function
r = 0.1x3 − 0.5x2 + 1 and the range [x] = [0, 6]. The normalized function for [x̃] = [−1, 1] is
r̃ = 2.7x̃3 + 3.6x̃2 − 0.9x̃ − 0.8. Evaluating the original function and the normalized function
with interval arithmetic results in

[r] = 0.1[0, 6]3 − 0.5[0, 6]2 + 1 = [−17.0, 22.6],
[r̃] = 2.7[−1, 1]3 + 3.6[−1, 1]2 − 0.9[−1, 1]− 0.8 = [−4.4, 6.4],

showing that the normalized form clearly outperforms the original form in this example.
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2.3.2 Branch and Bound

For most polynomials, interval arithmetic provides too conservative results. Finding guaranteed
bounds is the goal of global optimization techniques [21]. Techniques which can efficiently
obtain a global minimum or maximum, such as convex optimization or geometric programming,
cannot be applied to general polynomials. Therefore, we have implemented a branch and bound
algorithm [6, 30] in CORA.

Our implementation of a branch and bound algorithm is shown in Alg. 1, which evaluates each
coordinate of the output r = f(x) individually. In line 2-5 we first compute the bound using
interval arithmetic. We use the short form P ([x]) = {P (x)|x ∈ [x]}; in Alg. 1 it is assumed
that P : Rn → R due to evaluating each coordinate individually. We refine the computation
by splitting the input intervals in sub-intervals [x(k)] resulting in corresponding sub-intervals
of outputs [r(k)]. The index α of the input intervals [x(α)] resulting in the output intervals
[r(α)] with the largest upper bound, and the index α resulting in the smallest lower bound are
determined in line 8 and line 9, respectively. If α = α (which is typically only the case when
[x] has not yet been split), we split the coordinate of [x(k)] with the largest radius (line 11-16).
Otherwise, the intervals [x(α)] and [x(α)] are each split in their respective coordinate with the
largest radius (line 18-29). If the lower and upper bounds of the overall range [r∪] ←

⋃

i[r
(i)]

(line 30) do not change more than 2ǫ · rad([r∪]) (line 31), where rad([x]) := 0.5(x− x), the final
range [r∪] is returned. If we set ǫ→∞, the branch and bound technique becomes identical to
interval arithmetic.

In the lines 15, 22, and 28, we re-expand the original Taylor model P (using the operator
reexp(·)) at the midpoints of the newly generated sub-intervals before the bounds are calculated.
This re-expansion leads to tighter bounds, but can also be computationally expensive, especially
for Taylor models with high polynomial order and a large number of variables. Due to this trade-
off between computation time and precision, CORA offers the two algorithm variants standard
(without re-expansion) and advanced (with re-expansion).

Example 2 (Branch and bound on a non-monotonic function). We consider the non-monotonic
function r = 0.1x3 − 0.5x2 + 1. When applying Alg. 1, the upper and lower bounds are reduced
in each iteration as shown in Fig. 2.
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Figure 2: Improvements of bounding a polynomial using branch and bound for the first three
iterations of Alg. 1. The improvements of [r] over the iterations are [−3.50, 5.50], [−2.15, 5.05],
[−1.25, 1.91] (values are rounded). We have used the setting standard.
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Algorithm 1 Branch and bound

1: procedure BranchAndBound(P, [x], ǫ)
2: k = 1
3: [x](k) ← [x]
4: [r(k)]← P ([x(k)]) ⊲ obtain bounds as in (12)
5: [r∪]← [r(k)] ⊲ initialize union of all intervals
6: repeat
7: [r∪,prev]← [r∪] ⊲ update previous union of all intervals
8: α← argmaxk(r

(k)) ⊲ index of interval containing the upper bound
9: α← argmaxk(r

(k)) ⊲ index of interval containing the lower bound
10: if α == α then

11: β ← argmaxi(rad([x]
(α)
i )) ⊲ return coordinate with the largest radius

12: k = k + 1
13: [x(α,fh)]← [x(α)], [x

(α,fh)
β ]← [x

(α)
β , x

(α)
β − rad([x

(α)
β ])] ⊲ first half of [x(α)]

14: [x(α)]← [x(α,fh)], [x(k)]← [x(α)] \ [x(α,fh)] ⊲ split of [x(α)]
15: P1 ← reexp(P, mid([x(α)]), P2 ← reexp(P, mid([x(k)]) ⊲ adapt expansion point
16: [r(α)]← P1([x

(α)]), [r(k)]← P2([x
(k)]) ⊲ update bounds as in (12)

17: else
18: β ← argmaxi(rad([x]

(α)
i )) ⊲ return coordinate with the largest radius

19: k = k + 1
20: [x(α,fh)]← [x(α)], [x

(α,fh)
β ]← [x

(α)
β , x

(α)
β − rad([x

(α)
β ])] ⊲ first half of [x(α)]

21: [x(α)]← [x(α,fh)], [x(k)]← [x(α)] \ [x(α,fh)] ⊲ split of [x(α)]
22: P1 ← reexp(P, mid([x(α)]), P2 ← reexp(P, mid([x(k)]) ⊲ adapt expansion point
23: [r(α)]← P1([x

(α)]), [r(k)]← P2([x
(k)]) ⊲ update bounds as in (12)

24: β ← argmaxi(rad([x]
(α)
i )) ⊲ return coordinate with the largest radius

25: k = k + 1
26: [x(α,fh)]← [x(α)], [x

(α,fh)
β ]← [x

(α)
β , x

(α)
β − rad([x

(α)
β ])] ⊲ first half of [x(α)]

27: [x(α)]← [x(α,fh)], [x(k)]← [x(α)] \ [x(α,fh)] ⊲ split of [x(α)]
28: P1 ← reexp(P, mid([x(α)]), P2 ← reexp(P, mid([x(k)]) ⊲ adapt expansion point
29: [r(α)]← P1([x

(α)]), [r(k)]← P2([x
(k)]) ⊲ update bounds as in (12)

30: [r∪]←
⋃

i[r
(i)] ⊲ update union of all intervals

31: until r∪,prev − r∪ <= 2ǫ · rad([r∪]) & r∪,prev − r∪ <= 2ǫ · rad([r∪])
32: return [r∪]

2.3.3 Linear Dominated Bounder and Quadratic Fast Bounder

In addition to the branch and bound algorithm described in the previous subsection, we have
also implemented an algorithm for bounding values combining the Linear Dominated Bounder
(LDB) and the Quadratic Fast Bounder (QFB) presented in [33]. Similar to branch and bound,
this algorithm is based on the iterative splitting of the input interval into smaller sub-intervals
to determine the real minimum and maximum of a polynomial up to a user-defined precision ǫ.
Please note that due to the interval remainder part of the Taylor model, the difference between
the real minimum and maximum of the function r = f(x) and the calculated bounds can still be
much larger than ǫ. Our algorithm iteratively eliminates all sub-intervals that are guaranteed
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to not contain the minimum and maximum of the polynomial, until only one sub-interval is
left for the minimum, and one for the maximum. A linear and a quadratic approximation of
the Taylor model is used to determine the sub-intervals that are most likely to contain the
minimum and the maximum, which significantly speeds up the search.

2.4 Matrix Operations

This section addresses how CORA handles vectors and matrices represented by Taylor models,
where a vector is defined as a matrix with a single row or column. A matrix Taylor model is a
matrix in which each element is represented by a Taylor model. The operations of transpose,
addition, subtraction, multiplication, and division by a scalar are defined in a standard way.
The aforementioned operations can be broken down to addition and multiplication of scalar
Taylor models, which are realized as presented in Sec. 2.1. All unary operations are realized
element-wise as

[f(X)]ij = f(Xij)

so that we again resort to the implementation described in Sec. 2.1.

One exception is the computation of the inverse of a matrix Taylor model. Although in principle,
one could obtain the inverse of a matrix symbolically, e.g.,

A =

[
a11 a12
a21 a22

]

, A−1 =
1

a11a22 − a12a21

[
a22 −a12
−a21 a11

]

,

this approach is infeasible for larger matrices. For this reason we use the approach in [49,
Sec. V.B], which is based on the Sherman-Morrison (SM) formula (see [42, Sec. 2.7.1])

(A+B)−1 = A−1 − 1

1 + tr(A−1B)
(A−1BA−1), (13)

where tr(·) returns the trace of a matrix. The formula holds when B has unitary rank. By
splitting a Taylor model in a constant part and a remaining part, we obtain T = (P q(x −
x0), I) = cf + (P̃ q(x − x0), I) = cf + T̃ , where P̃ q(x− x0) = P q(x− x0)− cf and T̃ = T − cf .

When T̃ has unitary rank, we can compute

(cf + T̃ )−1 = c−1
f −

1

1 + tr(c−1
f T̃ )

(c−1
f T̃ c−1

f ) (14)

using only methods from Sec. 2.1. However, in most cases, T̃ has full rank so that [49, Sec. V.B]
splits the matrix T̃ into a sum of rank-one matrices T̃ =

∑n
i=1 T̃i, where T̃i is a matrix whose

ith column coincides with T̃ and all other entries are zero. One first applies (14) for T̃1 and cf .

Next, (cf + T̃1 + T̃2)
−1 is calculated by choosing A = cf + T̃1 and B = T̃2 in (13); the inverse

of A is available from the previous step. This is repeated until the final matrix T̃n has been
considered.

3 Affine Arithmetic

Affine arithmetic uses affine forms, i.e., first-order polynomials consisting of a vector x ∈ R
n

and noise symbols ǫi ∈ [−1, 1] (see e.g., [17]):

x̂ = x0 + ǫ1x1 + ǫ2x2 + . . .+ ǫpxp.
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The possible values of x̂ lie within a zonotope [29]. In contrast to Taylor models, it is possible
that p > n so that affine forms are not a special case of Taylor models. This is the same reason
why polynomial zonotopes are different from Taylor models, since polynomial zonotopes are a
generalization of zonotopes [2].

However, in this work, we only consider intervals as inputs and outputs so that Taylor models of
first order can implement an affine arithmetic. Obviously, other methods for realizing an affine
arithmetic exist, e.g., Chebyshev (minimax) approximations or the min-range approximation
[48, Sec. 3].

4 Implementation in CORA

Taylor models are implemented in CORA by the class taylm. To make use of cancellation
effects, we have to provide names for variables in order to recognize identical variables; this is
different from implementations of interval arithmetic, where each variable is treated individually
as demonstrated in (4). We have realized three primal ways to generate a matrix containing
Taylor models.

Method 1: Composition from scalar Taylor models. The first possibility is to generate
scalar Taylor models from intervals as shown subsequently.

1 a1 = i n t e r v a l (−1 , 2) ; % generate a s c a l a r i n t e r v a l [−1 ,2 ]
2 b1 = taylm (a1 , 6) ; % generate a s c a l a r Taylor model o f order 6
3 a2 = i n t e r v a l (2 , 3) ; % generate a s c a l a r i n t e r v a l [ 2 , 3 ]
4 b2 = taylm (a2 , 6) ; % generate a s c a l a r Taylor model o f order 6
5 c = [ b1 ; b2 ] % generate a row of Taylor models

When a scalar Taylor model is generated from a scalar interval, the name of the variable is
deduced from the name of the interval. If one wishes to overwrite the name of a variable a2 to
c, one can use the command taylm(a2, 6, {’c’}).

Method 2: Converting an interval matrix. One can also first generate an interval matrix,
i.e., a matrix containing intervals, and then convert the interval matrix into a Taylor model.
The subsequent example generates the same Taylor model as in the previous example.

1 a = in t e r v a l ( [ −1 ; 2 ] , [ 2 ; 3 ] ) ; % generate an i n t e r v a l vector [ [ −1 , 2 ] ; [ 2 , 3 ] ]
2 c = taylm (a , 6 , { ’ a1 ’ ; ’ a2 ’ }) % generate a Taylor model ( order 6) with

va r i ab l e names a1 and a2

Note that the cell for naming variables {’a1’;’a2’} has to have the same dimensions as the
interval matrix a. If no names are provided, default names are automatically generated.

Method 3: Symbolic expressions. We also provide the possibility to create a Taylor model
from a symbolic expression.

1 syms a1 a2 ; % i n s t a n t i a t e symbol i c v a r i a b l e s
2 s = [ 2 + 1.5∗ a1 ; 2 . 75 + 0.25∗ a2 ] ; % c r ea t e symbol i c f unc t i on
3 c = taylm ( s , i n t e r v a l ( [ −2 ; −3 ] , [ 0 ; 1 ] ) , 6) % generate Taylor model
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This method does not require naming variables since variable names are taken from the variable
names of the symbolic expression. The interval of possible values has to be specified after the
symbolic expression s; here: [[−2, 0] [−3, 1]]T .
All examples generate a row vector c as shown in Sec. 2.2. Since all variables are normalized
to the range [−1, 1] according to (11), we obtain

c =

[
0.5 + 1.5 · ã1 + [0, 0]
2.5 + 0.5 · ã2 + [0, 0]

]

.

The following workspace output of MATLAB demonstrates how the dependency problem is
considered by keeping track of all encountered variables:

>> c(1) + c(1)

ans =

1.0 + 3.0*a1 + [0.00000,0.00000]

>> c(1) + c(2)

ans =

3.0 + 1.5*a1 + 0.5*a2 + [0.00000,0.00000]

4.1 Implementation of Polynomials

Competitive runtimes of Taylor model implementations can only be realized by efficient addition
and multiplication of polynomials, since these two base operations are repeatedly used as shown
in Appendix A. To this end, we use a concept similar to the MONOMIAL Toolbox1. A monomial
is defined as a product of powers of variables with nonnegative integer exponents, e.g., x2

1x
3
2x3.

Let us define d as the number of monomial terms and n as the number of variables. We encode
polynomials as tuples with three entries P (x) = {c, E, id}, where c ∈ R

d is a vector storing the
coefficients for each monomial term of the polynomial, E ∈ R

n×d is a matrix that stores the
exponents of the monomials, and id ∈ Sn is a list of strings S that stores the identifiers for all
variables that are part of the polynomial. Let us consider the following polynomial p(x) that
consists of d = 4 monomial terms and has n = 3 variables as a demonstrating example:

p(x) = 1.3 + 3.4x2
1x2 − 2.3x3

1x
2
4 + 4.5x3

1x
2
2x

3
4. (15)

This polynomial is represented in CORA as:

P (x) = {c, E, id} , with c =







1.3
3.4
−2.3
4.5






, E =





0 2 3 3
0 1 0 2
0 0 2 3



 , id =





”x1”
”x2”
”x4”



 . (16)

Before two polynomials can be added or multiplied, we have to ensure that the identification
vectors of both polynomials are identical. The first step is therefore to determine a common
identification vector idnew from the vectors id1 and id2 of the two polynomials. After this,
the exponent matrices E1 and E2 have to be transformed to this new common representation,

1MONOMIAL is a MATLAB toolbox for multivariate polynomials. The toolbox is available at
https://people.sc.fsu.edu/~jburkardt/m_src/monomial/monomial.html
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which can be easily realized by commutation of matrix rows and insertion of new all-zero rows.
We demonstrate this concept using two polynomials P1(x) and P2(x):

P1(x) = {c1, E1, id1}, with c1 =





2.3
3.1
−2.7



 , E1 =

[
0 1 4
1 2 2

]

, id1 =

[
”x2”
”x5”

]

,

P2(x) = {c2, E2, id2}, with c2 =

[
−1.1
5.2

]

, E2 =
[
0 3

]
, id2 =

[
”x3”

]
.

(17)

The transformation of these two polynomials to a common representation yields

P1(x) = {c1, E1, id1}, with c1 =





2.3
3.1
−2.7



 , E1 =





0 1 4
0 0 0
1 2 2



 , id1 =





”x2”
”x3”
”x5”



 ,

P2(x) = {c2, E2, id2}, with c2 =

[
−1.1
5.2

]

, E2 =





0 0
0 3
0 0



 , id2 =





”x2”
”x3”
”x5”



 .

(18)

After the polynomials have been transformed to a common representation, addition is realized
with a simple concatenation || of the coefficient vectors cnew = c1||c2 and the exponent matri-
ces Enew = E1||E2. The representation of the resulting polynomial Pnew(x) possibly contains
redundant information, because there could be multiple monomials with identical exponents.
In order to obtain a compact representation, these monomials have to be combined to a single
monomial by adding their respective coefficients. In order to find all monomials that have iden-
tical exponents, we first sort the columns of the exponent according to the graded lexicographic
order [16, Chap. 2]. After that, we only have to compare neighboring columns in the sorted
exponent matrix to determine all monomials with identical exponents. Note that the sorting
of the exponent matrix can be costly, since the number of variables n in the Taylor model can
be large. To speed up the computations, we pre-sort the matrix Enew according to a scalar

hash value h(e
(i)
new), where e

(i)
new is the i-th matrix column of Enew and h(·) is a hash function.

By using this pre-sorting, only columns with identical hash values have to be further sorted
according to the entries in the matrix rows. Note that this concept implements a bucket sort
algorithm [10], where each bucket contains elements with identical hash values. In order to get
a low number of hash function collisions for matrix columns that are not identical, we choose

the hash function h(e
(i)
new) = [1, 1, . . . , 1]e

(i)
new for our Taylor model implementation, which is

identical to the sum of entries in the column e
(i)
new.

The multiplication of two polynomials can be implemented similar to addition, where all dnew =
d1 ·d2 monomial terms of the resulting polynomial have to be generated by multiplication of the
respective coefficients in combination with an addition of the corresponding exponent matrix
columns. Afterwards, all monomials with identical exponents have to be combined in order to
obtain a compact representation, as described above.

155



Implementation of Taylor models in CORA 2018 Althoff, Grebenyuk, and Kochdumper

4.2 List of Functions of the Class taylm

In this subsection we list the functions realized in CORA. Since CORA is implemented in MAT-
LAB, the function names are chosen such that they overload the built-in MATLAB functions.
Tab. 1 lists the implemented mathematical functions and Tab. 2 shows auxiliary functions,
which are required to e.g., specify Taylor models, arrange them in matrices, access values, per-
form set operations, and display results, among others. Examples of using some of the listed
functions in MATLAB are provided in Appendix C.

Table 1: Methods of the class taylm that realize mathematical functions. All functions can be
applied to scalars, vectors, or matrices.

name description

acos arccos(·) function as defined in (31)
asin arcsin(·) function as defined in (30)
atan arctan(·) function as defined in (32)
cos cos(·) function as defined in (25)
cosh cosh(·)function as defined in (28)
det determinant of a Taylor model matrix
exp exponential function as defined in (21)
interval various implementations of the bound operator B(·) as presented in Sec. 2.3
log natural logarithm function as defined in (22)
minus overloaded ’-’ operator, see (7)
mpower overloaded ’ˆ’ operator (power)
mrdivide overloaded ’/’ operator (division), see (9)
mtimes overloaded ’*’ operator (multiplication), see (8) for scalars and Sec. 2.4 for matrices
plus overloaded ’+’ operator (addition), see (6) for scalars and Sec. 2.4 for matrices
power overloaded ’.ˆ’ operator (elementwise power)
rdivide overloads the ’./’ operator: provides elementwise division of two matrices
reexpand re-expand the Taylor model at a new expansion point
sin sin(·) function as defined in (24)
sinh sinh(·) function as defined in (27)

sqrt
√

(·) function as defined in (23)
tan tan(·) function as defined in (26)
tanh tanh(·) function as defined in (29)
times overloaded ’.*’ operator for elementwise multiplication of matrices
trace trace of a Taylor model matrix
uminus overloaded ’-’ operator for a single operand
uplus overloaded ’+’ operator for a single operand

4.3 Additional Parameters for the Class taylm

CORA’s Taylor model implementation contains some additional parameters which can be mod-
ified by the user:

• max order: Maximum polynomial degree of the monomials in the polynomial part of
the Taylor model. Monomials with a degree larger than max order are bounded with the
bounding operator B(·) and added to the interval remainder. Further, q = max order
is used for the implementation of the formulas listed in Appendix A.
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Table 2: Auxiliary methods of the class taylm.

name description

display displays the values of a taylm object in the MATLAB workspace
getCoef returns the array of polynomial coefficients of a taylm object
getRem returns the interval part of a taylm object
getSyms returns the polynomial part of a taylm object as a symbolic expression
optBnb implementation of the branch and bound algorithm as presented in Sec. 2.3.2
optBnbAdv implementation of the advanced branch and bound algorithm as presented in Sec. 2.3.2
optLinQuad implementation of the algorithm based on LDB and QFB as presented in Sec. 2.3.3
horzcat overloads the operator for horizontal concatenation, e.g., a = [b, c, d]

set set the additional class parameters (see Sec. 4.3)
setName set the names of the variables in taylm

subsasgn overloads the operator that assigns elements of a taylm matrix I, e.g., I(1,2) = value,
where the element of the first row and second column is set

subsref overloads the operator that selects elements of a taylm matrix I, e.g., value = I(1,2),
where the element of the first row and second column is read

taylm constructor of the taylm class
vertcat overloads the operator for vertical concatenation, e.g., a = [b; c; d]

• tolerance: Minimum absolute value of the monomial coefficients in the polynomial part
of the Taylor model. Monomials with a coefficient whose absolute value is smaller than
tolerance are bounded with the bounding operator B(·) and added to the interval re-
mainder.

• eps: Termination tolerance ǫ for the branch and bound algorithm from Sec. 2.3.2 and for
the algorithm based on the Linear Dominated Bounder and the Quadratic Fast Bounder
from Sec. 2.3.3.

These parameters are stored as properties of the class taylm. In the functions plus, minus, and
times, two Taylor models are combined to one resulting Taylor model object using the rules

max ordernew = max(max order1,max order2),

tolerancenew = min(tolerance1, tolerance2),

epsnew = min(eps1, eps2),

(19)

where the subscript new refers to the resulting object, and 1 and 2 to the initial objects.

4.4 Class zoo

As later shown in Sec. 5, it is often better to use several simple range bounding methods
in parallel and intersect the results. For instance, it is advantageous for most range bounding
problems to combine interval arithmetic with Taylor models of order 3 rather than only applying
one accurate method, such as using Taylor models of order 6. On average this strategy is more
accurate and faster to compute.

To facilitate mixing different techniques, we have created the class zoo in which one can specify
the methods to be combined. All methods implemented for Taylor models in Tab. 1 and Tab. 2
are also available for the class zoo.

For the initialization of the zoo object, the different techniques that should be used for range
bounding can be specified as a list of strings. Currently, the following techniques are available:

157



Implementation of Taylor models in CORA 2018 Althoff, Grebenyuk, and Kochdumper

• interval: Interval arithmetic.

• affine(int): Affine arithmetic; the bounds B(·) are calculated with interval arithmetic.

• affine(bnb): Affine arithmetic; the bounds B(·) are calculated with the branch and
bound algorithm (see Sec. 2.3.2).

• affine(bnbAdv): Affine arithmetic; the bounds B(·) are calculated with the advanced
branch and bound algorithm (see Sec. 2.3.2).

• taylm(int): Taylor models; the bounds B(·) are calculated with interval arithmetic.

• taylm(bnb): Taylor models; the bounds B(·) are calculated with the branch and bound
algorithm (see Sec. 2.3.2).

• taylm(bnbAdv): Taylor models; the bounds B(·) are calculated with the advanced
branch and bound algorithm (see Sec. 2.3.2).

• taylm(linQuad): Taylor models; the bounds B(·) are calculated with the algorithm that
is based on LDB and QFB (see Sec. 2.3.3).

In addition to the bounding techniques, the additional parameters from Sec. 4.3 as well as the
names of the variables can be specified as optional input arguments. The bounds of the zoo

object can be computed with the interval operator, which intersects the intervals obtained
by all specified techniques.

1 i n t = in t e r v a l (1 , 2) ; % generate a s c a l a r i n t e r v a l [ 1 , 2 ]
2 methods = { ’ i n t e r v a l ’ , ’ taylm (bnb ) ’ , ’ a f f i n e ( i n t ) ’ } ; % range bounding

techn iques
3 max order = 10 ; % max . polynomial order o f the Taylor models
4 e p s i l o n = 0 . 0 0 1 ; % terminat i on to l e r ance f o r the branch and bound algor i thm
5 t o l e r ance = 1e−8; % minimum abso lute value f o r monomial c o e f f i c i e n t s
6

7 z = zoo ( int , methods , ’ x ’ , max order , eps i l on , t o l e r ance ) ; % generate the zoo−
ob j e c t

8 s z = s i n ( z ) ; % ca l c u l a t e the s i n e o f the zoo−ob j e c t
9 r = i n t e r v a l ( s z ) % ca l c u l a t e the bounds

The above code produces the following output:

r =

[0.84147,1.00000]

5 Numerical Experiments

In this section, we compare two aspects: a) the performance of Taylor models implemented in
CORA with other tools and b) the accuracy of Taylor model computations with interval arith-
metic, affine arithmetic, and a combination of techniques. We first start with a few motivating
examples which highlight advantages and disadvantages of the investigated techniques.
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5.1 Motivating Examples

We first motivate the study of complementary techniques by presenting examples for which
different techniques provide the best result.

Example 3 (Example in favor of interval arithmetic). Let us obtain the bound [r] = sin([x]),
[x] = [0, π2 ].
Interval arithmetic: Since sin(x) is monotone on [0, π2 ], interval arithmetic returns (see [5,
eq. (12)])

[r] = [sin(0), sin(
π

2
)] = [0, 1],

which is the exact result.
Affine arithmetic: The affine form of [x] is [x] = π

4 + ǫπ4 . To use (24), we first require x0 =

0.5(x+ x) = π
4 , cf = x0 = π

4 , and T̃ = x− cf . Using (24) we obtain

[r] = sin(cf ) + cos(cf )T̃ −
1

2
B(T̃ 2) sin(cf + [0, 1]B(T̃ ))

= sin(π/4) + cos(π/4)(x − π/4)

− 1

2
B
(
(x− π/4)2

)
sin
(
π/4 + [0, 1]B(x− π/4)

)

=sin(π/4)− cos(π/4)π/4 + cos(π/4)x

− 1

2
([0, π/2]− π/4)2 sin

(
π/4 + [0, 1]([0, π/2]− π/4)

)

=0.1517 + 0.7071x− [0.00000,
π2

32
]

=[−0.1567, 1.2624].

Taylor model: We use a Taylor model of third order. Due to the length of the computation, we
do not present it and only provide the output interval using interval arithmetic (see Sec. 2.3.1):
[r] = [−0.1234, 1.3354].
Example 4 (Example where affine arithmetic is better than a Taylor model). Typically, Taylor
models provide better results than affine arithmetic, but for the example r =

√
x3 − x with

[x] = [2, 3] affine arithmetic is better. However, interval arithmetic provides the best result.
Interval arithmetic: After inserting the intervals, interval arithmetic returns (see [5, eq. (5)])

[r] =
√

[2, 3]3 − [2, 3] =
√

[5, 25] = [
√
5, 5] = [2.2361, 5.0].

Affine arithmetic: The affine form of [x] is [x] = 2.5 + ǫ0.5. Using (23), we obtain

[r] =
√

(2.5 + ǫ0.5)3 − (2.5 + ǫ0.5)

=
√

8.875ǫ+ 13.125 + [0, 2]

=1.2249ǫ+ 3.6228 + [−1.68727, 0.78250]
=[0.71071, 5.63021].
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Taylor model: We use a Taylor model of third order; the Taylor model of [x] is T = 2.5+0.5x+
[0, 0]. When using (23) and interval arithmetic to bound the polynomial (see Sec. 2.3.1), the
result is

[r] =
√

T 3 − T

=
√

0.125x3 + 1.875x2 + 8.875x+ 13.125

=− 0.00023256x3 + 0.051714x2 + 1.2249x+ 3.6228 + [−3.86179, 1.86704]
=[−1.46404, 6.76670].

Example 5 (Example in favor of Taylor models). We use the same example as in example 2:
r = 0.1x3 − 0.5x2 + 1 and [x] = [0, 6].
Interval arithmetic: After inserting the intervals, interval arithmetic returns (see [5, eq. (9)])

[r] = 0.1[0, 6]3 − 0.5[0, 6]2 + 1 = 0.1[0, 216]− 0.5[0, 36] + 1 = [−17.0, 22.6].

Affine arithmetic: The affine form of [x] is [x] = 3 + ǫ3. Since power is realized by multiple
times applying multiplication, we only require (6), (7), and (8):

[r] =0.1(3 + ǫ3)3 − 0.5(3 + ǫ3)2 + 1

=− 0.9ǫ− 0.8 + [−4.5, 10.8]
=[−6.2, 10.9].

Taylor model: We use a Taylor model of third order. The Taylor model of [x] is T = 3 + 3x+
[0, 0]. When using interval arithmetic to bound the polynomial (see Sec. 2.3.1), we obtain

[r] =0.1T 3 − 0.5T 2 + 1

=0.1(27x3 + 81x2 + 81x+ 27)− 0.5(9x2 + 18x+ 9) + 1

=2.7x3 + 3.6x2 − 0.9x− 0.8

=[−4.4, 6.4].

Next, we compare our results with Flow* and INTLAB.

5.2 Comparison with Flow* and INTLAB

In this subsection, we compare our implementation of Taylor models with Flow* [12] and our
implementation of affine arithmetic in Sec. 3 with INTLAB [46]. Flow* and INTLAB both
consider rounding errors of floating-point numbers. Since CORA has been designed primarily
for prototyping new methods for reachability analysis and for other set-based techniques, CORA
is currently not considering floating-point rounding errors.

All computations are performed on an Intel Core i7-7820HQ processor running at 2.9GHz.
In order to reduce any possible bias, we have chosen the benchmarks from another work on
relative error bounds for floating-point arithmetic [25]. For our results, the relative precision of
an interval x is obtained as

[δ, δ] =
[

− x− xref

xref − xref

,
x− xref

xref − xref

]

· 100%, (20)
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where xref is a reference value. This measure of the precision is more informative than the
scalar overestimation factor used in [32, Eq. 5.1], because it evaluates the precision of the lower
and the upper range bounds separately. Another possibility would be to focus on the remainder
of the Taylor models; however, by comparing the obtained function bounds, we also evaluate
how well the polynomial part can be bounded. We used the real bounds of the function for the
reference interval xref . This ensures that xref ⊆ x, so that the relative precision δ ≥ 0. Large
values for δ therefore correspond to a large over-approximation, and a value of δ = 0 means
that the calculated bound is identical to the real bound. We determined the real bounds for
all benchmark models with a precision of 10−6 using the verified global optimization approach
from [33]. If the computation of the bounds took longer than 10 seconds we terminated it.
These cases are marked with the symbol ”−” in Tab. 3 and Tab. 4.

For our Taylor model and affine arithmetic implementation, we compare the results for bounding
the polynomial parts with interval arithmetic (Interval subs.) as described in Sec. 2.3.1, branch
and bound (BnB) as well as advanced branch and bound (BnB adv.) as described in Sec. 2.3.2
and Alg. 1 (with ǫ = 0.001), and our algorithm based on LDB and QFB (LDB/QFB) as
described in Sec. 2.3.3 (with ǫ = 0.001).

The results from the comparison of our Taylor model implementation with Flow* in speed and
accuracy are summarized in Tab. 3, Tab. 4, and Tab. 5. We also show the results obtained by
using a zoo object with the range bounding techniques interval and taylm(int) (see Sec.
4.4). For each benchmark model, we compare the results computed with different maximal
polynomial orders. Since Flow* is written in C++, the implementation is significantly faster for
all functions compared to CORA. For most benchmark models the precision of Flow* is slightly
worse than the precision of Taylor models with interval substitution in CORA. An exception
to this are the last two benchmark models, for which the use of Flow* results in large over-
approximations. Since these two benchmark models are the only ones that contain fractions,
this is most probably caused by a large over-approximation from the Lagrange remainder of the
inverse, as it is described in Appendix B. Flow* is not primarily designed to use Taylor models
alone, but for computing reachable sets using Taylor models. We are grateful to Xin Chen for
providing us with a standalone Taylor model library comprising basic mathematical operations.

For the different bounding techniques implemented in CORA the numerical results are as ex-
pected: The more sophisticated algorithms LDB/QFB, and branch and bound in general, have
a higher precision than interval substitution; in return, however, they lead to significantly larger
execution times.

In Tab. 6 and Tab. 7 we list the results from our comparison with INTLAB. In addition to
the results for affine arithmetic, the results calculated with CORA’s interval arithmetic are
displayed, too. Since INTLAB considers rounding errors, it is slower than CORA’s interval
arithmetic implementation. The numerical results show further that the precision of INTLAB’s
affine arithmetic is better than the one for affine arithmetic in CORA. A possible reason for this
is that affine arithmetic in CORA is implemented with Taylor models that have a polynomial
order of one, which seems to not fully exploit all advantages of the affine arithmetic approach.

Contrary to the Taylor model implementation, using the branch and bound algorithm for affine
arithmetic does not improve the precision. The LDB/QFB algorithm cannot be applied for
affine arithmetic, since it is based on a separation of the Taylor model monomials into linear
and higher-order monomials. Since affine arithmetic objects are linear by definition, they do not
contain any higher-order monomials, which makes the application of the algorithm impossible.
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Table 3: Comparison of Taylor model techniques (part 1). The precision is provided in percent
compared to the exact result as shown in (20). The input ranges are presented in Tab. 8 and
the examples are taken out of [25].

Bench-
mark

Max.
order

CORA

Interval
subs.

BnB
BnB
(adv.)

LDB/
QFB

Zoo (Int.
subs.)

Flow*

2 [140, 148] [140, 148] [86.7, 148] [82.0, 148] [0, 0] [215, 148]
sin 5 [166, 146] [41.5, 8.23] [6.29, 3.55] [5.92, 3.54] [0, 0] [241, 174]

10 [162, 146] [35.1, 3.87] [0.40, 0.03] [0.01, 0.01] [0, 0] [241, 174]

2 [27.4, 0] [27.4, 0] [1.33, 0] [1.00, 0] [0, 0] [54.8, 0]
bspline0 5 [27.4, 0] [27.4, 0] [0, 0] [0, 0] [0, 0] [54.8, 0]

10 [27.4, 0] [27.4, 0] [0, 0] [0, 0] [0, 0] [54.8, 0]

2 [0, 30.9] [0, 30.9] [0, 3.61] [0, 2.86] [0, 0] [0, 61.7]
bspline1 5 [0, 30.9] [0, 30.9] [0, 0] [0, 0] [0, 0] [0, 61.7]

10 [0, 30.9] [0, 30.9] [0, 0] [0, 0] [0, 0] [0, 61.7]

2 [33.8, 0] [33.8, 0] [6.77, 0] [5.08, 0] [3.92, 0] [67.6, 0]
bspline2 5 [33.8, 0] [33.8, 0] [0, 0] [0, 0] [3.92, 0] [67.6, 0]

10 [33.8, 0] [33.8, 0] [0, 0] [0, 0] [3.92, 0] [67.6, 0]

2 [34.9, 0] [34.9, 0] [8.40, 0] [6.41, 0] [0, 0] [69.7, 0]
bspline3 5 [34.9, 0] [34.9, 0] [0, 0] [0, 0] [0, 0] [69.7, 0]

10 [34.9, 0] [34.9, 0] [0, 0] [0, 0] [0, 0] [69.7, 0]

2 [0.07, 1.58] [0.07, 1.58] [0.06, 1.41] [0.07, 1.58] [0.07, 0.50] [0.05, 1.58]
doppler 5 [0.07, 1.58] [0.07, 1.58] [0.06, 1.41] [0.07, 1.58] [0.07, 0.50] [0.05, 1.58]

10 [0.07, 1.58] [0.07, 1.58] [0.06, 1.41] [0.07, 1.58] [0.07, 0.50] [0.05, 1.58]

2 [105, 90.2] [105, 90.2] [56.0, 89.5] - [105, 12.7] [167, 90.9]
himmilbeau 5 [105, 90.2] [29.7, 11.5] [0.03, 0] [0, 0] [105, 12.7] [167, 90.9]

10 [105, 90.2] [29.7, 11.5] [0.03, 0] [0, 0] [105, 12.7] [167, 90.9]

6 Conclusions

This paper has four main contributions. First, we present how we have implemented Taylor
models and affine arithmetic in CORA. To our best knowledge, our implementation of Taylor
models is the only one available for MATLAB.

Second, we have improved the existing technique for computing divisions with Taylor models
by computing a tighter Lagrange remainder.

Third, we compare our implementation of Taylor models with Flow* and our implementation
of affine arithmetic with INTLAB. While Flow* is faster due to its implementation in C++,
the implementation in CORA is easier to use due to the prototyping capabilities of MATLAB.
Our implementation of affine arithmetic in CORA is faster compared to INTLAB, which is also
implemented using MATLAB. However, our implementation does not consider floating-point
errors.
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Table 4: Comparison of Taylor model techniques (part 2). The precision is provided in percent
compared to the exact result as shown in (20). The input ranges are presented in Tab. 8 and
the examples are taken out of [25].

Bench-
mark

Max.
order

CORA

Interval
subs.

BnB
BnB
(adv.)

LDB/
QFB

Zoo (Int.
subs.)

Flow*

2 [8.22, 15.9] [8.22, 15.9] [1.23, 1.79] [0, 0] [8.22, 15.9] [8.22, 19.2]
kepler0 5 [8.22, 15.9] [8.22, 15.9] [1.23, 1.79] [0, 0] [8.22, 15.9] [8.22, 19.2]

10 [8.22, 15.9] [8.22, 15.9] [1.23, 1.79] [0, 0] [8.22, 15.9] [8.22, 19.2]

2 [11.8, 37.7] [11.8, 37.7] [7.36, 4.70] - [11.8, 37.7] [12.6, 51.4]
kepler1 5 [11.8, 37.7] [2.14, 11.9] [0, 0.02] [0, 0] [11.8, 37.7] [12.6, 51.4]

10 [11.8, 37.7] [2.14, 11.9] [0, 0.02] [0, 0] [11.8, 37.7] [12.6, 51.4]

2 [31.7, 42.1] [31.7, 42.1] [4.86, 6.16] - [31.7, 42.1] [32.0, 53.8]
kepler2 5 [31.7, 42.1] [15.7, 28.0] [0, 0.04] [0, 0] [31.7, 42.1] [32.0, 53.8]

10 [31.7, 42.1] [15.7, 28.0] [0, 0.04] [0, 0] [31.7, 42.1] [32.0, 53.8]

2 [0, 14.7] [0, 14.7] [0, 0.01] [0, 0] [0, 10.9] [0, 14.7]
rigidBody1 5 [0, 14.7] [0, 14.7] [0, 0.01] [0, 0] [0, 10.9] [0, 14.7]

10 [0, 14.7] [0, 14.7] [0, 0.01] [0, 0] [0, 10.9] [0, 14.7]

2 [13.5, 3.57] [13.5, 3.57] [1.95, 2.12] - [13.5, 3.57] [21.9, 3.57]
rigidBody2 5 [12.6, 2.64] [10.5, 1.32] [0.05, 0] [0, 0] [12.5, 2.64] [21.0, 2.64]

10 [12.5, 2.64] [10.50, 1.32] [0.05, 0] [0, 0] [12.5, 2.64] [21.0, 2.64]

2 [135, 148] [123, 140] [122, 61.3] - [135, 2.67] [1645, 1703]
turbine1 5 [20.4, 62.1] [20.4, 62.1] [18.4, 7.85] - [20.4, 2.67] [6113, 14542]

10 [2.29, 49.5] [2.25, 49.5] [2.20, 2.98] - [2.29, 2.67] [1.4, 1.4] ·107

2 [124, 152] [116, 147] [58.7, 128] - [2.72, 152] [1200, 1203]
turbine2 5 [60.0, 66.6] [28.0, 32.2] [5.77, 17.3] - [2.72, 66.6] [3296, 4739]

10 [50.5, 53.4] [22.3, 18.9] [0.78, 2.14] - [2.72, 53.4] [51543, 51546]

Fourth, we provide an evaluation of range bounding techniques. We are not aware of any other
paper that has evaluated the combined use of several range bounding techniques. Our finding is
that it is typically better to use several simple range bounding methods in parallel and intersect
the results, rather than using a single, precise technique.
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Table 5: Execution time of Taylor models in [ms]. The precision is shown in Tab. 3 and Tab. 4.

Bench-
mark

Max.
order

CORA

Int. subs. BnB BnB (adv.) LDB/QFB Zoo Flow*

2 5.121 9.160 20.190 662.538 5.444 0.760
sin 5 10.711 29.834 45.990 761.600 11.338 0.602

10 20.686 54.855 83.278 1183.286 21.189 2.038

2 3.398 6.184 24.351 763.741 5.123 0.315
bspline0 5 3.215 5.848 28.387 46.442 4.931 0.253

10 3.232 5.858 28.377 46.453 4.955 0.229

2 5.268 8.977 28.578 1374.154 6.748 0.393
bspline1 5 5.123 8.825 34.226 60.206 6.474 0.343

10 5.098 8.645 34.128 60.103 6.912 0.341

2 6.408 9.809 29.103 1372.837 7.808 0.410
bspline2 5 5.918 10.221 34.901 60.763 7.656 0.368

10 5.952 9.435 34.487 61.052 7.668 0.381

2 3.394 5.865 22.618 757.405 3.953 0.297
bspline3 5 2.922 5.546 26.177 56.131 3.737 0.250

10 2.891 5.944 26.403 56.403 4.116 0.248

2 11.861 33.916 168.653 50.641 14.419 2.254
doppler 5 19.447 63.644 269.977 77.486 22.072 15.275

10 29.076 90.646 300.920 120.311 31.661 16.039

2 10.092 20.671 69.174 > 104 13.276 0.368
himmilbeau 5 9.694 44.447 138.585 200.525 13.034 0.304

10 10.440 44.718 139.237 199.924 13.653 0.300

2 10.375 24.926 79.291 204.928 13.930 0.259
kepler0 5 9.968 24.936 79.315 205.600 13.613 0.248

10 10.486 24.964 78.712 206.022 13.862 0.246

2 16.325 37.301 200.240 > 104 22.034 0.488
kepler1 5 16.142 90.636 707.967 286.366 21.724 0.419

10 16.162 90.168 707.910 287.493 21.673 0.419

2 27.233 75.755 2162.720 > 104 35.211 1.242
kepler2 5 26.249 230.252 2842.870 2788.519 34.213 0.947

10 26.267 230.206 2840.406 2777.606 33.811 0.927

2 3.803 7.505 47.418 17.503 5.824 0.128
rigidBody1 5 3.815 7.571 47.543 17.514 5.800 0.096

10 3.825 7.582 46.938 17.538 5.898 0.093

2 10.660 23.180 175.691 > 104 13.787 0.403
rigidBody2 5 9.841 28.158 273.927 152.315 13.071 0.257

10 9.827 29.152 274.003 152.527 13.004 0.254

2 38.963 94.590 445.262 > 104 44.399 1.254
turbine1 5 71.851 122.223 1390.662 > 104 74.605 2.279

10 123.518 210.891 3905.585 > 104 127.326 4.822

2 24.550 53.024 487.946 > 104 27.044 0.541
turbine2 5 42.189 168.089 2929.171 > 104 48.433 1.498

10 75.779 257.485 6138.943 > 104 75.459 3.855
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Table 6: Comparison of affine arithmetic. The precision is provided in percent compared to the
exact result as shown in (20). The input ranges are presented in Tab. 8 and the examples are
taken out of [25].

Bench-
mark

CORA

Interval subs. BnB BnB (adv.) Interval IntLab

sin [170.89, 106.22] [170.89, 106.22] [170.89, 106.22] [0, 0] [0, 0]

bspline0 [21.76, 0] [21.76, 0] [30.02, 0] [0, 0] [0, 0]

bspline1 [0, 23.83] [0, 23.83] [-0.00, 33.31] [0, 0] [0, 0]

bspline2 [25.12, 0] [25.12, 0] [35.73, 0] [3.92, 3.92] [3.92, 0]

bspline3 [24.69, 0] [24.69, 0] [35.94, 0] [0, 0] [0, 0]

doppler [0.44, 1.95] [0.44, 1.95] [0.44, 1.95] [1.31, 0.50] [0.45, 0.50]

himmilbeau [136.64, 92.14] [136.64, 92.14] [159.66, 92.40] [110.10, 12.71] [110.10, 12.71]

kepler0 [8.22, 15.89] [8.22, 15.89] [8.22, 16.72] [21.12, 32.14] [8.22, 19.22]

kepler1 [16.82, 42.66] [16.82, 42.66] [16.82, 46.10] [34.96, 77.05] [20.74, 59.55]

kepler2 [67.20, 77.68] [67.20, 77.68] [67.20, 80.33] [139.40, 148.98] [69.01, 90.83]

rigidBody1 [0, 14.71] [0, 14.71] [0, 14.71] [0.72, 10.85] [0, 10.85]

rigidBody2 [18.32, 8.53] [18.32, 8.53] [20.46, 8.53] [15.65, 9.86] [15.65, 8.53]

turbine1 [206.21, 184.71] [206.21, 184.71] [208.26, 191.47] [240.73, 2.67] [206.98, 2.67]

turbine2 [148.01, 202.92] [148.01, 202.92] [153.10, 205.02] [2.72, 238.35] [2.72, 203.87]

Table 7: Execution time of affine arithmetic in [ms]. The precision is shown in Tab. 6.

Bench-
mark

CORA

Int. subs. BnB BnB (adv.) Interval IntLab

sin 3.293 6.540 11.332 0.192 10.649

bspline0 3.921 7.084 14.532 0.111 6.245

bspline1 6.305 11.060 21.072 0.136 8.966

bspline2 7.322 11.543 22.552 0.132 10.235

bspline3 3.544 6.476 13.892 0.095 4.071

doppler 9.728 24.025 35.102 0.197 10.624

himmilbeau 12.429 23.759 43.541 0.146 13.347

kepler0 12.546 28.480 39.405 0.216 12.799

kepler1 19.186 42.304 63.121 0.237 21.082

kepler2 30.710 79.738 129.766 0.348 33.086

rigidBody1 4.703 8.768 13.309 0.106 5.735

rigidBody2 11.942 24.764 41.808 0.161 14.412

turbine1 30.123 48.471 76.614 0.300 19.165

turbine2 19.423 34.023 53.376 0.219 12.887
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Table 8: Input uncertainty for all benchmark models downloadable from
https://github.com/malyzajko/daisy/blob/master/testcases/. The placeholders
for the uncertainties are defined as follows: a = [−4.5,−0.3], b = [0.4, 0.9], c = [3.8, 7.8],
d = [8, 10], e = [−10, 8], f = [1, 2].

Benchmark Uncertainty File path

sin sin(x), x ∈ a

bspline0 u ∈ a /mixed-precision/Bsplines0.scala

bspline1 u ∈ a /rosa/Bsplines.scala

bspline2 u ∈ a /rosa/Bsplines.scala

bspline3 u ∈ a /rosa/Bsplines.scala

doppler u ∈ a, v ∈ b, T ∈ c /rosa/Doppler.scala

himmilbeau x1 ∈ a, x2 ∈ b /real2float/Himmilbeau.scala

kepler0 x1 ∈ a, x2 ∈ b, x3 ∈ c, x4 ∈ d, x5 ∈ e, x6 ∈ f /real2float/Kepler.scala

kepler1 x1 ∈ a, x2 ∈ b, x3 ∈ c, x4 ∈ d /real2float/Kepler.scala

kepler2 x1 ∈ a, x2 ∈ b, x3 ∈ c, x4 ∈ d, x5 ∈ e, x6 ∈ f /real2float/Kepler.scala

rigidBody1 x1 ∈ a, x2 ∈ b, x3 ∈ c /control/RigidBody.scala

rigidBody2 x1 ∈ a, x2 ∈ b, x3 ∈ c /control/RigidBody.scala

turbine1 v ∈ a, w ∈ b, r ∈ c /rosa/Turbine.scala

turbine2 v ∈ a, w ∈ b, r ∈ c /rosa/Turbine.scala
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A List of Smooth Functions

Let T = P (x − x0) + [I] be a Taylor model ∀x ∈ [x] (see Def. 2), where P (x − x0) is a
polynomial part up to the q-th order, I is an interval, cf = P (0), P̃ (x− x0) = P (x− x0)− cf ,

T̃ = P̃ (x− x0) + [I], and B(·) returns over-approximative bounds for Taylor models.

Monotonic functions:
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• Exponential from [32, Eq (2.2)–(2.4)]:

exp(T ) = exp(cf ) ·
[

1 + T̃ +
1

2!
T̃ 2 + ...+

1

q!
T̃ q
]

+
exp(cf )

(q + 1)!

(

B(T̃ q+1) · exp([0, 1] · B(T̃ )
)

.

(21)

• Logarithm from [32, p. 386] is defined under the conditionB(T ) ⊂ (0,∞):

log(T ) = log cf +
T̃

cf
− 1

2

T̃ 2

c2f
+ ...+ (−1)q+1 1

q

T̃ q

cqf

+ (−1)q+2 1

q + 1

B(T̃ q+1)

cq+1
f

1

(1 + [0, 1] · B(T̃ )
cf

)q+1
.

(22)

• Square root from [32, p. 386] is defined under the conditionB(T ) ⊂ (0,∞):

√
T =
√
cf

[

1 +
1

2

T̃

cf
− 1

2!22
T̃ 2

c2f
+ ...+ (−1)q−1 (2q − 3)!!

q!2q
T̃ q

cqf

]

+ (−1)q√cf
(2q − 1)!!

(q + 1)!2q+1

B(T̃ q+1)

cq+1
f

1

(1 + [0, 1] · B(T̃ )
cf

)q+1/2
.

(23)

• Inverse 1
T : see Sec. 2.1

Trigonometric functions:

• Sine from [32, p. 387]:

sin(T ) = sin(cf ) + cos(cf ) · T̃ −
1

2!
sin(cf ) · T̃ 2 − 1

3!
cos(cf ) · T̃ 3 + ...

+
1

(q + 1)!
B(T̃ q+1) · J ,

(24)

where

J =

{

−J0 if mod (q, 4) = 1 or 2,

J0 else,

J0 =

{

cos(cf + [0, 1] · B(T̃ )) if q is even,

sin(cf + [0, 1] ·B(T̃ )) else.

• Cosine from [32, p. 387]:

cos(T ) = cos(cf )− sin(cf ) · T̃ −
1

2!
cos(cf ) · T̃ 2 +

1

3!
sin(cf ) · T̃ 3 + ...

+
1

(q + 1)!
B(T̃ q+1) · J ,

(25)
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where

J =

{

−J0 if mod (q, 4) = 0 or 1,

J0 else,

J0 =

{

sin(cf + [0, 1] · B(T̃ )) if q is even,

cos(cf + [0, 1] ·B(T̃ )) else.

• Tangent:

tan(T ) = sin(T ) ·
( 1

cos(T )

)

. (26)

Hyperbolic functions:

• Hyperbolic sine from [32, p. 388]:

sinh(T ) = sinh(cf ) + cosh(cf ) · T̃ +
1

2!
sinh(cf ) · T̃ 2 +

1

3!
cosh(cf ) · T̃ 3 + ...

+
1

(q + 1)!
B(T̃ q+1) · J0,

(27)

where

J0 =

{

cosh(cf + [0, 1] · B(T̃ )) if q is even,

sinh(cf + [0, 1] ·B(T̃ )) else.

• Hyperbolic cosine from [32, p. 388 ]:

cosh(T ) = cosh(cf ) + sinh(cf ) · T̃ +
1

2!
cosh(cf ) · T̃ 2 +

1

3!
sinh(cf ) · T̃ 3 + ...

+
1

(q + 1)!
B(T̃ q+1) · J0,

(28)

where

J0 =

{

sinh(cf + [0, 1] ·B(T̃ )) if q is even,

cosh(cf + [0, 1] ·B(T̃ )) else.

• Hyperbolic tangent:

tanh(T ) =
sinh(T )

cosh(T )
. (29)

Inverse trigonometric functions:

• Arcsine from [32, p. 388] under the condition of B(T ) ⊂ (−1, 1):

arcsin(T ) = arcsin(cf ) +G+
1

3!
G3 +

32

5!
G5 +

3252

7!
G7 + ...

+
1

(q + 1)!
B(G)q+1 arcsin(q+1)([0, 1] · B(G)),

(30)
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where

G = T ·
√

1− c2f − cf ·
√

1− T 2

and arcsin(1)(0) = 1, arcsin(2)(0) = 0, arcsin(3)(0) = 1, and arcsin(q)(0) = (q −
2)2 arcsin(q−2)(0).

• Arccosine from [32, p. 389]:

arccos(T ) =
π

2
− arcsin(T ). (31)

• Arctangent from [32, p. 389]:

arctan(T ) = arctan(cf ) +G− 1

3
G3 +

1

5
G5 − 1

7
G7 + ...

+
1

(q + 1)
B(G)q+1 cosq+1

(

arctan([0, 1] ·B(G))
)

· sin
(

(q + 1)(arctan([0, 1] · B(G)) +
π

2
)
)

,

(32)

where

G =
T − cf

1 + cf · T
.

B Tight Bounds for the Taylor Model Inverse Operation

As shown in (10), the equation for the 1
T operation for a Taylor model T = P (x− x0) + [I] can

be derived from the Taylor series of the function f(x) = 1
x . The Lagrange remainder term

Lq(B(T̃ ), cf ) = (−1)q+1B(T̃ )q+1

cq+2
f

1
(

1 + [0, 1] · B(T̃ )
cf

)q+2 , cf = P (0), T̃ = T − cf , (33)

thereby represents an over-approximation of the exact integral remainder

Rq(x, cf ) =

∫ x

cf

f (q+1)(t)
(x − t)q

q!
dt, x ∈ B(T ), (34)

where f (i) represents the i-th derivative of the function f(·). Evaluation of the Lagrange
remainder (33) for a Taylor model can lead to very large over-approximations, as the following
example demonstrates:

T = 0.45 + 0.35x+ [0, 0], x ∈ [−1, 1],
B(T ) = [0.1, 0.8], cf = 0.45, B(T̃ ) = [−0.35, 0.35],

1

B(T )
= [1.25, 10],

Lq=6([−0.35, 0.35], 0.45) = [−64339.29688, 64339.29688].

(35)
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One solution is to analytically solve the integral in (34) for the function f(x) = 1
x , which results

in an equation for the exact remainder:

Rq(x, cf ) = (q + 1) · (−1)(q+1)

︸ ︷︷ ︸
:=a

∫ x

cf

(x− t)q

t(q+2)
dt,

= − a

q + 1

(x− t)q

t(q+1)

∣
∣
∣
∣

x

cf

− a · q
q + 1

∫ x

cf

(x− t)(q−1)

t(q+1)
dt,

=
a

q + 1

(x− cf )
q

c
(q+1)
f

− q

q + 1
·Rq−1(x, cf ) ,

(36)

with

R0(x, cf ) = a ·
∫ x

cf

1

t2
dt = −a

t

∣
∣
∣

x

cf
=

a

cf
− a

x
. (37)

The exact remainder therefore represents a polynomial, and its bounds on the range of the
Taylor model Rq (B(T ), cf ) can be calculated with standard interval arithmetic. Due to the
limitations of interval arithmetic, this can also lead to possibly large over-approximations,
which are however usually smaller than the over-approximations resulting from evaluation of
the Lagrange remainder (33). Tighter bounds for the exact remainder can be obtained if the
input interval B(T ) is split into several sub-intervals. The over-approximation error can be
made arbitrarily small if the sub-intervals are chosen small enough. Since the problem is one-
dimensional, this splitting-based technique does not suffer from the curse of dimensionality.

Because the evaluation of the Lagrange remainder (33) is faster than the evaluation of the
exact remainder (36), and because the Lagrange remainder does not always result in large over-
approximations, we implemented the following heuristic in CORA for the calculation of the
remainder rem:

rem =

{

Lq(B(T̃ ), cf ) if Lq(B(T̃ ), cf ) ⊂ 1
B(T )

Rq(B(T ), cf ) otherwise
, (38)

where cf = P (0) and T̃ = T − cf .

C Examples

This section presents the results of several examples evaluated in CORA:

1 a1 = i n t e r v a l (−1 , 2) ; % generate a s c a l a r i n t e r v a l [−1 ,2 ]
2 a2 = i n t e r v a l (2 , 3) ; % generate a s c a l a r i n t e r v a l [ 2 , 3 ]
3 a3 = i n t e r v a l (−6 , −4) ; % generate a s c a l a r i n t e r v a l [−6 ,4 ]
4 a4 = i n t e r v a l (4 , 6) ; % generate a s c a l a r i n t e r v a l [ 4 , 6 ]
5

6 b1 = taylm (a1 , 6) ; % Taylor model with order 6 and name a1
7 b2 = taylm (a2 , 6) ; % Taylor model with order 6 and name a2
8 b3 = taylm (a3 , 6) ; % Taylor model with order 6 and name a3
9 b4 = taylm (a4 , 6) ; % Taylor model with order 6 and name a4

10

11 B1 = [ b1 ; b2 ] % generate a row of Taylor models
12 B2 = [ b3 ; b4 ] % generate a row of Taylor models
13

14 B1 + B2 % addi t i on
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15 B1 ’ ∗ B2 % matrix mu l t i p l i c a t i o n
16 B1 .∗ B2 % pointwi s e mu l t i p l i c a t i o n
17 B1 / 2 % d i v i s i o n by s c a l a r
18 B1 . / B2 % pointwi s e d i v i s i o n
19 B1.ˆ3 % power f unc t i on
20 s i n (B1) % s i n e f unc t i on
21 s i n (B1(1 , 1 ) ) + B1(2 , 1 ) . ˆ2 − B1 ’ ∗ B2 % s c a l a r + matrix combination o f

f unc t i on s

The resulting workspace output is:

B1 =

0.5 + 1.5*a1 + [0.00000,0.00000]

2.5 + 0.5*a2 + [0.00000,0.00000]

B2 =

-5.0 + a3 + [0.00000,0.00000]

5.0 + a4 + [0.00000,0.00000]

B1 + B2 =

-4.5 + 1.5*a1 + a3 + [0.00000,0.00000]

7.5 + 0.5*a2 + a4 + [0.00000,0.00000]

B1’ * B2 =

10.0 - 7.5*a1 + 2.5*a2 + 0.5*a3 + 2.5*a4 + 1.5*a1*a3 + 0.5*a2*a4 + [0.00000,0.00000]

B1 .* B2 =

-2.5 - 7.5*a1 + 0.5*a3 + 1.5*a1*a3 + [0.00000,0.00000]

12.5 + 2.5*a2 + 2.5*a4 + 0.5*a2*a4 + [0.00000,0.00000]

B1 / 2 =

0.25 + 0.75*a1 + [0.00000,0.00000]

1.25 + 0.25*a2 + [0.00000,0.00000]

B1 ./ B2 =

-0.1 - 0.3*a1 - 0.02*a3 - 0.06*a1*a3 - 0.004*a3^2 - 0.012*a1*a3^2

- 0.0008*a3^3 - 0.0024*a1*a3^3 - 0.00016*a3^4 - 0.00048*a1*a3^4

- 0.000032*a3^5 - 0.000096*a1*a3^5 - 6.4e-6*a3^6 + [-0.00005,0.00005]

0.5 + 0.1*a2 - 0.1*a4 - 0.02*a2*a4 + 0.02*a4^2 + 0.004*a2*a4^2

- 0.004*a4^3 - 0.0008*a2*a4^3 + 0.0008*a4^4 + 0.00016*a2*a4^4

- 0.00016*a4^5 - 0.000032*a2*a4^5 + 0.000032*a4^6 + [-0.00005,0.00005]

B1.^3 =

0.125 + 1.125*a1 + 3.375*a1^2 + 3.375*a1^3 + [0.00000,0.00000]

15.625 + 9.375*a2 + 1.875*a2^2 + 0.125*a2^3 + [0.00000,0.00000]

sin(B1) =

0.47943 + 1.3164*a1 - 0.53935*a1^2 - 0.49364*a1^3 + 0.10113*a1^4

+ 0.055535*a1^5 - 0.0075847*a1^6 + [-0.00339,0.00339]

0.59847 - 0.40057*a2 - 0.074809*a2^2 + 0.01669*a2^3 + 0.0015585*a2^4

- 0.00020863*a2^5 - 0.000012988*a2^6 + [-0.00000,0.00000]

sin(B1(1,1)) + B1(2,1).^2 - B1’ * B2 =

-3.2706 + 8.8164*a1 - 0.5*a3 - 2.5*a4 - 0.53935*a1^2 + 0.25*a2^2

- 1.5*a1*a3 - 0.5*a2*a4 - 0.49364*a1^3 + 0.10113*a1^4

+ 0.055535*a1^5 - 0.0075847*a1^6 + [-0.00339,0.00339]
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