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Abstract 

Semantic segmentation of point clouds with deep learning (DL) heavily relies on large 

datasets for training. However, there is a significant scarcity of datasets for Mechanical, 

Electrical, and Plumbing (MEP) scenes. To address this gap, this study proposes a 

method namely the ray-based laser scanning and intersection algorithm (RBLSIA) for 

automatically generating synthetic point clouds for MEP from Building Information 

Modeling (BIM) models. Based on RBLSIA, this study conducted totally 25 groups of 

comparative experiments, investigating the semantic segmentation performance on 

MEP scenes with different training datasets and different generation approaches for 

synthetic point clouds. The results show that: 1) the mean Intersection over Union 

(mIoU) with synthetic point clouds produced by the RBLSIA method is on average 

3.32% higher than that by the uniform sampling method; 2) increasing the number of 

synthetic point cloud samples further improved both the OA and mIoU for semantic 

segmentation, even surpassing the training accuracy achieved with real point clouds. 

1 Introduction 

Building Information Modeling (BIM) has become a crucial tool in managing and maintaining 

building facilities. BIM provides comprehensive semantic and geometric information, which is 

essential for effective facility management. As-built BIM models, which capture the actual state of a 

facility, play a key role in improving maintenance and monitoring processes, thereby enhancing 

operational efficiency (Xiong et al., 2013). 

Mechanical, Electrical, and Plumbing (MEP) systems are critical components of a facility. These 

systems require regular maintenance and renovation, particularly in older buildings. BIM models, 

which offer detailed information on MEP components, are highly valuable for these tasks. However, 

many existing MEP systems, especially in older facilities, do not have corresponding BIM models. 

Moreover, as-built conditions often differ from the original design plans, making frequent site surveys 

necessary to keep BIM models updated. 
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In recent years, three-dimensional (3D) laser scanning, especially terrestrial laser scanning (TLS), 

has demonstrated high accuracy and efficiency in capturing detailed geometric data, making it an 

effective method for 3D reconstruction (Wang et al., 2022). A 3D laser scanner emits infrared laser 

beams and measures the distance to objects based on the reflected signals. By capturing distances 

from multiple angles, the scanner generates a complete set of point cloud data that accurately 

represents the 3D geometry of the scanned environment. However, point cloud data, while rich in 

geometric detail, often lacks semantic information, necessitating further processing to identify and 

classify objects within the data. Traditional object recognition methods, such as those based on 

geometric shape descriptors, hard-coded knowledge, supervised learning, or BIM-vs.-Scan (Wang et 

al., 2020), rely on predefined human knowledge and extensive parameter tuning. These methods 

become inadequate when dealing with MEP components that have extensive occlusions and irregular 

shapes. 

Over the past few years, deep learning (DL) algorithms like PointNet and PointNet++ have 

demonstrated strong capabilities in processing point clouds for classification and segmentation tasks 

(Yue et al., 2024).  By automatically learning complex patterns from large labeled datasets, DL 

reduces dependence on manually crafted features and enhances performance (Yin et al., 2021; Zhang 

et al., 2022). However, DL models typically require substantial training data. Unlike images, point 

cloud acquisition involves multi-station laser scanning, a process that is both time-intensive and labor-

intensive. Moreover, annotating point clouds is significantly more challenging than labeling images. 

As a result, obtaining extensive labeled point cloud datasets is essential for DL-based model 

development.  

To address data scarcity, BIM-based synthetic point cloud generation has been introduced as an 

efficient way to produce labeled point cloud data from BIM models, reducing the cost and effort 

required for data collection (Tang et al., 2022; Tang et al., 2023). Current research primarily focuses 

on generating synthetic point clouds for indoor building environments and bridges, leading to 

improvements in semantic segmentation accuracy (Lamas et al., 2024; Tang et al., 2023; Won et al., 

2020; Zhai et al., 2022; Zhang and Zou, 2023). However, synthetic point cloud generation for MEP 

systems remains unexplored. It is still uncertain whether such synthetic data can enhance DL-based 

semantic segmentation accuracy. Furthermore, conventional uniform sampling methods may fail to 

capture real-world occlusion effects, highlighting the need for a more specialized approach to 

synthetic point cloud generation in MEP contexts. 

To bridge this gap, this study introduces a method for generating synthetic point clouds from 

BIM models tailored for MEP scenes by simulating real laser scanning. The effectiveness of this 

approach is evaluated by comparing semantic segmentation performance across different synthetic 

point cloud generation techniques and training datasets. 

2  METHOD 

2.1 Proposed Method 

This study introduces a method for generating synthetic point clouds for MEP scenes using 

BIM models. The overall workflow is illustrated in Figure 1. Initially, the BIM model is converted 

into the OBJ format, which is then processed using the Trimesh library in Python. Following this, 

synthetic point clouds are generated using the Ray-based Laser Scanning and Intersection Algorithm 

(RBLSIA). The detailed steps of the RBLSIA include three steps: Simulating Laser Scanner 

Positions, Setting Scanning Parameters and Error Simulation, and Intersection with Triangle Mesh. 
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Simulating Laser Scanner Positions: The RBLSIA begins by simulating the positions of the 

laser scanner based on human-accessible areas. The scanner positions are chosen to avoid areas 

occupied by equipment such as pumps and tanks, while ensuring sufficient spacing between each 

scanning position. 

Setting Scanning Parameters and Error Simulation: Next, the scanning parameters, such as 

vertical and horizontal resolution, are determined based on the actual specifications of the laser 

scanner. To simulate real-world conditions, measurement errors are also introduced. Synthetic laser 

rays are then generated accordingly. 

Intersection with Triangle Mesh: The core of the RBLSIA is the Ray Intersections with 

Triangle Mesh (RITM) algorithm. This algorithm checks for intersections between each laser ray and 

the scene's triangle mesh. The closest intersection points are recorded and used to generate the 

synthetic point clouds. These points include relevant data such as material, color, and category. The 

pseudo-code for the RITM this method is shown in Algorithm 1. 

 

Algorithm 1: Ray Intersections with Triangle Mesh algorithm 

• intersection_points←[] 

• For each direction∈D: 

o dmin←∞ 

o For each mesh_part∈scene.geometry: 

▪ h←mesh_part.ray.intersects_location(direction) 

▪ If h: 

▪ d←||h−𝑃𝑠|| 

▪ If d<dmin: 

▪ dmin←d 

▪ closest_intersection←(h, material,color, category)  

o If closest_intersection: 

▪ intersection_points.append(closest_intersection) 

• return intersection_points 

Figure 1: Process of generating synthetic point clouds for MEP scene from BIM 
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2.2 Data Preparation 

The PSNET5 dataset (Yin et al., 2023) is used in this study to validate the proposed approach. 

The initial scene includes 500 million raw data points, covering approximately 3700 square meters, 

and consists of four areas with different scenes, as shown in Table 1. 

 

Table 1. The number of points of each semantic category of the PSNET5 dataset. 

Area Scene ibeam pipe pump rbeam tank Total 

Area1 CH 359,610 22,799,721 1,478,449 5,821,433 0 30,459,213 

Area2 OSCG 467,782 5,712,622 5,712,622 2,488,327 5,455,825 14,404,173 

Area3 SPH 3,023,003 8,408,907 2,455,212 9,055,639 1,523,331 24,466,092 

Area4 WRT2 656,071 3,052,706 836,554 7,040,629 0 11,585,960 

Total 4,506,466 39,973,956 5,049,832 24,406,028 6,979,156 80,915,438 

In this study, synthetic point clouds are generated from the raw point clouds of Area1, 

Area2, and Area3. The raw point clouds are imported into Revit, where MEP components are 

modeled to create BIM models for each area. Subsequently, synthetic point clouds are generated from 

these BIM models. Figure 2 illustrates the BIM model and generated point clouds for Area3. 

 
Figure 2: The BIM model and generated point clouds of Area3 

2.3 Experimental Settings 

 

This study employed ResPointNet++ as the DL algorithm (Yin et al., 2023). Each experiment 

was conducted over 100 epochs, utilizing the SGD optimizer with an initial learning rate of 0.01 and 

cross-entropy as the loss function. All experiments were performed on a single NVIDIA GTX 4090 

GPU, with each set taking approximately 12 hours to complete. Due to the inconsistent color 
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standards and varying reflections in MEP components, the input channels were limited to XYZ 

coordinates, excluding color information. 

To evaluate the performance of DL models, three metrics were used: Overall Accuracy (OA), 

Intersection over Union (IoU), and mean IoU (mIoU). OA provides an overall measure of accuracy by 

indicating the proportion of correctly predicted points relative to the total. IoU assesses segmentation 

quality for each class by measuring the overlap between predicted and actual segments. In contrast, 

mIoU offers a balanced evaluation across all N classes, highlighting the model's consistent 

performance across different object types. The formulas for these metrics are presented in Equations 

(1), (2), and (3). 

𝑂𝐴 =  
Number of correctly classified points

Total number of points
 

(1) 

 

𝐼𝑜𝑈 =  
True Positive

True Positive + False Positive + False Negative
 

 

(2) 

𝑚𝐼𝑜𝑈 =  
1

𝑁
∑ 𝐼𝑜𝑈𝑖

𝑛

𝑖=1

 
(3) 

2.4 Experimental Design 

The validation experiments include three parts. First, the performance of the uniform sampling 

method and the RBLSIA sampling method synthetic point clouds was compared. Second, the 

performance of semantic segmentation using with real point clouds and synthetic point clouds as 

training data was compared. Finally, the effect of increasing the number of synthetic point cloud 

samples on the semantic segmentation results was examined. 

3  METHOD 

3.1 Comparison of Different Generation Methods for Synthetic Point 

Clouds 

This section aimed to compare the performance of two different generation methods for 

synthetic point clouds: uniform sampling method and RBLSIA sampling method. As shown in Table 

2, five CGs (A to E) were conducted with different training sets and test sets, where some used purely 

synthetic data for training while some others used a mix of real and synthetic data for training.  

According to the comparison results, it is clear that using synthetic point clouds generated by 

the RBLSIA method could always yield better model performance than using data from the uniform 

sampling method. On average, the RBLSIA method could achieve an improvement of 2.13% and 

3.32% in OA and mIoU, respectively. Among all IoU metrics, the tank category showed the most 

significant improvement of 38.38%, followed by pump of 5.47%, rbeam of 2.41%, pipe of 1.55%, and 

ibeam of -1.76%. The substantial improvements in the tank and pump categories may be attributed to 

these being minority classes. For minority classes, more realistic synthetic point cloud features help in 

learning more accurate characteristics, thereby improving the precision of these categories. The 

average performance of the RBLSIA method on ibeam was slightly worse than that of uniform 

sampling. This is possibly because ibeam is relatively slender, making it difficult for the RBLSIA 

method to include its complete features, whereas uniform sampling is more likely to include complete 

features. Overall, the results demonstrate that the RBLSIA sampling method provides better model 
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performance compared to uniform sampling method. Thus, the RBLSIA sampling method was 

adopted in the following experiments. 

 

Table 2. Comparison between uniform sampled synthetic point clouds and RBLSIA sampled 

synthetic point clouds 

 

CG Exp. 

No. 

Training set Test 

set 

OA 

(%) 

mIoU 

(%) 

IoU (%) 

ibeam pipe pump rbeam tank 

A 

1 Area2 RBLSIA 

synthetic 

Area3 64.62 45.46 56.45 48.74 0.02 69.23 64.62 

2 Area2 uniform 

synthetic 

Area3 63.19 42.85 66.73 54.08 0 67.18 26.24 

B 

3 Area3 RBLSIA 

synthetic 

Area4 85.52 68.05 98.30 50.58 26.14 97.19 / 

4 Area3 uniform 

synthetic 

Area4 83.64 63.56 97.76 45.53 21.32 89.64 / 

C 

5 Area1 RBLSIA 

synthetic, Area3 

real 

Area4 95.22 89.10 95.97 85.22 78.76 96.46 / 

6 Area1 uniform 

synthetic, Area3 

real 

Area4 93.28 83.09 97.05 75.26 63.92 96.15 / 

D 

7 Area1+Area3 

RBLSIA synthetic 

Area4 96.30 90.06 95.23 84.89 81.41 94.79 / 

8 Area1+Area3 

uniform synthetic 

Area4 93.76 89.64 93.23 88.65 79.91 96.78 / 

E 

9 Area2+Area3 

RBLSIA synthetic 

Area1 81.69 74.38 68.67 87.04 74.03 67.79 / 

10 Area2+Area3 

uniform synthetic 

Area1 78.81 71.33 68.63 85.18 67.83 63.67 / 

3.2 Comparison of Training with Real and Synthetic Point Clouds 

This section compared the performance of training with real point clouds and synthetic point 

clouds of the same areas. As shown in Table 3, a total of seven CGs (F to L) were carried out. In each 

CG, DL models were trained separately with real point clouds and synthetic point clouds of certain 

areas, and the two trained models were tested on the real point clouds of another area.  

According to the results, in all the CG except CG-L, training with synthetic point clouds 

resulted in lower OA and mIoU compared to training with real point clouds. On average, OA was 

decreased by 6.35% and mIoU was decreased by 10.84% when training with synthetic point clouds. 

Therefore, in most cases, the training effectiveness of synthetic point clouds was inferior to that of 

real point clouds, reflecting the differences between synthetic and real point clouds. 

Table 3. Comparison between training with synthetic point clouds and real point clouds 

 

CG Exp. 

No. 

Training set Test set OA mIoU 

(%) 

IoU (%) 

ibeam pipe pump rbeam tank 

F 

11 Area3 real Area4 92.85 80.31 97.06 73.23 53.89 97.05 / 

3 Area3 

synthetic 

Area4 85.52 68.05 98.30 50.58 26.13 97.19 / 
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G 

12 Area3 real Area1 90.70 90.98 79.76 96.87 97.54 89.77 / 

13 Area3 

synthetic 

Area1 77.21 49.74 45.58 74.11 28.12 51.15 / 

H 

14 Area1 real Area4 91.55 69.30 39.13 79.56 66.40 92.11 / 

15 Area1 

synthetic 

Area4 82.49 56.15 39.29 47.73 50.25 87.34 / 

I 

16 Area1 + Area2 

+ Area3 real  

Area4 96.27 95.25 97.01 91.96 95.06 96.98 / 

17 Area1 + Area2 

+ Area3 

synthetic 

Area4 88.22 75.49 64.72 79.43 61.61 96.19 / 

J 

18 Areal1 real Area3 77.00 64.82 73.85 56.59 49.75 79.08 / 

19 Area1 

synthetic 

Area3 70.99 56.11 56.58 41.89 50.09 75.87 / 

K 

20 Area2 real Area4 71.57 35.37 42.63 23.01 0.00 75.64 / 

21 Area2 

synthetic 

Area4 51.48 29.17 45.78 28.02 0.00 42.89 / 

L 

22 Area2 real Area3 45.06 20.06 17.88 0.00 0.00 82.42 0.00 

1 Area2 

synthetic 

Area3 64.62 45.47 56.46 48.74 0.00 69.23 52.92 

3.3 Comparison of Training with Real and Synthetic Point Clouds with 

Different Data Sizes 

Results in the previous section showed that, with the same training data size, training with 

synthetic point clouds would achieve worse performance than training with real point clouds. 

However, one major advantage of using synthetic point clouds is its lower cost of generating labeled 

dataset. Therefore, this section aimed to examine whether it is possible to improve the model 

performance by increasing the training data size when using synthetic point clouds. 

As shown in Table 4, totally five CGs (M to Q) were implemented. In each CG, the training set 

contained only one area when training with real point clouds, while the training set contained one or 

two areas when training with synthetic point clouds. In all the five CGs, it is found that training with 

synthetic point clouds of two areas could generate better performance than training with synthetic 

point clouds of only one area, with an average improvement of 13.91% for OA and 24.58% for mIoU. 

Hence, it is concluded that increasing the training data size could effectively improve the model 

performance when training with synthetic point clouds. 

Among all the five CGs, three of them (CG-M, CG- N, and CG-O) showed that training with 

synthetic point clouds of two areas could yield better performance than training with real point clouds 

of only one area. This indicated that, with a larger training data size, purely using synthetic point 

clouds was able to achieve better performance than using real point clouds. 

 

Table 4. Comparison between uniform sampled synthetic point clouds and RBLSIA sampled 

synthetic point clouds 

 

CG 
Exp. 

No. 
Training set 

Test 

set 
OA(%) 

mIoU 

(%) 

IoU (%) 

ibeam pipe pump rbeam tank 

M 
14 Area1 real Area4 91.55 69.30 39.13 79.56 66.4 92.11 / 

15 Area1 synthetic Area4 82.49 56.15 39.29 47.73 50.25 87.34 / 
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23 Area1+Area3 

synthetic 
Area4 96.30 90.06 95.23 84.89 81.41 94.79 / 

N 

11 Area3 real Area4 92.85 80.31 97.06 73.23 53.89 97.05 / 

3 Area3 synthetic Area4 85.52 68.05 98.30 50.58 26.13 97.19 / 

23 Area1+Area3 

synthetic 
Area4 96.30 90.06 95.23 84.89 81.41 94.79 / 

O 

20 Area2 real Area4 71.57 35.37 42.63 23.01 0 75.64 / 

21 Area2 synthetic Area4 51.48 29.17 45.78 28.02 0.00 42.89 / 

24 Area2+Area3 

synthetic 
Area4 89.52 70.84 97.11 56.83 30.94 98.47 / 

P 

18 Areal1 real Area3 77.00 64.82 73.85 56.59 49.75 79.08 / 

19 Area1 synthetic Area3 70.99 56.11 56.58 41.89 50.09 75.87 / 

25 Area1+Area2 

synthetic 
Area3 73.42 56.77 46.75 55.13 53.13 72.09 56.77 

Q 

12 Area3 real Area1 90.70 90.98 79.76 96.87 97.54 89.77 / 

13 Area3 synthetic Area1 77.21 49.74 45.58 74.11 28.12 51.15 / 

9 Area2+Area3 

synthetic 

Area1 81.69 74.38 68.67 87.04 74.03 67.79 
/ 

4 DISCUSSION 

The proposed method provides a cost-efficient approach to generating training point cloud data 

and enhancing semantic segmentation for MEP scenes, which can play an important role in the 

maintenance and renovation of existing MEP systems in not only industrial plants but also other types 

of facilities. Without any real point cloud data, simply using synthetic point clouds generated from 

BIM models can obtain semantic segmentation models with certain accuracies. Specifically, 

according to the experimental results, training with synthetic point clouds of only one area could 

achieve an OA of 50% to 86% and an mIoU of 30% to 68% (refer to Table 3), and training with 

synthetic point clouds of two areas could further achieve an OA of 73% to 96% and an mIoU of 56% 

to 90% (refer to Table 4). 

5 CONCLUSIONS 

This study proposed the RBLSIA to automatically generate synthetic point clouds for MEP from 

BIM models. A total of 25 comparative experiments were carried out to evaluate the semantic 

segmentation performance across different methods for synthetic point cloud generation, and different 

training datasets. The experimental results indicated that: 1) the mIoU with synthetic point clouds 

produced by the RBLSIA method is on average 3.32% higher than that by the uniform sampling 

method; 2) increasing the number of synthetic point cloud samples further improved both the OA and 

mIoU for semantic segmentation, even surpassing the training accuracy achieved with real point 

clouds. 
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The results also reveal a gap between synthetic and real point clouds, particularly for components 

with significant differences between BIM models and real objects (such as pumps). Future research 

should focus on reducing these discrepancies to further enhance the quality of synthetic point clouds. 

Additionally, future studies can expand the range of MEP components (e.g., valves and fittings) and 

utilize different point cloud synthesis algorithms (e.g., diffusion models) to investigate the impact of 

various synthesis methods and component types on semantic segmentation accuracy. 
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