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Abstract 
Accurate identification of the location the vertebra and corresponding pedicle is 

critical during pedicle screw insertion for percutaneous spinal fusion surgery. Currently, 
two dimensional (2D) fluoroscopy based navigation systems have extensive usage in 
spinal fusion surgery. Relying on 2D projection images for screw guidance results in high 
misplacement rates. Furthermore, fluoroscopy-based guidance exposes the surgical staff 
and patient to harmful ionizing radiation. Real-time non-radiation-based ultrasound (US) 
is a potential alternative to intra-operative fluoroscopy. However, accurate interpretation 
of noisy US data and manual operation of the transducer during data collection remains 
a challenge. In this work we investigate the potential of using multi-modal deep 
convolutional neural network (CNN) architectures for fully automatic identification of 
vertebra level and pedicle from US data. Our proposed network achieves 93.54% vertebra 
identification accuracy on in vivo US data collected from 27 subjects.  

1 Introduction 
Due to the proximity of many important neural and vascular structures, accurate screw placement is 
important during spinal fusion surgery. Misplacement will impact fusion rate and even cause adjacent 
level disease (Manbachi, et al., 2014). Percutaneous pedicle screw insertion (PPSI) procedures, based 
on Computer assisted orthopedic surgery (CAOS) systems,  have gained widespread acceptance due to 
advantages, such as reduced length of stay, reduced blood loss and improved accuracy(Mobbs, et al., 
2011). One of the main disadvantage of CAOS is the exposure to radiation since the main intra-operative 
imaging modality is 2D/3D fluoroscopy.   

Due to its real-time, 2D/3D, and non-radiation-based imaging capabilities, ultrasound (US) has 
been investigated as an alternative imaging modality in various CAOS procedures (Hacihaliloglu, 
2017a). Despite promising results, US has not become the standard-of-care in CAOS. One of the biggest 
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challenges of incorporating US into CAOS procedures is related to the manual operation of the US 
transducer during data collection. In order to overcome this problem, last year our group has presented 
an approach, based on convolutional neural networks (CNNs), for automatic identification of the pedicle 
scan plane from sagittal in vivo US data (Qi, et al., 2018). However, automatic identification of vertebra 
level is also important since the optimal entry point for pedicle screw is located at intersection of 
transverse and sagittal scan plane  (Oh, et al., 2013).  

With these in mind, we propose a deep learning framework for both sagittal and transverse scan 
plane classification for automatic and accurate identification of pedicle screw entry point from real-time 
US data. The proposed system, through utilizing a combination multiple features and a novel 
multimodal CNNs architecture, achieves accurate and robust results overcoming the disadvantage of 
US images not corresponding to any anatomical structure, and facilitates surgeon to select the correct 
scan plane during the procedure. We validate our method on scans collected from 27 subjects. 

2 Materials and Methods 
2.1 Data Collection 

After obtaining approval from the Rutgers University institutional review board (IRB), US Lumbar 
spine images were captured from 27 subjects with written consent. For training, 313 sagittal scan US 
images, using longitudinal paramedian sagittal scanning approach, and 433 transverse US images, using 
transverse scanning approach, were collected from 18 subjects. Sagittal scans included 130 images of 
articular process (AP) view, 91 images of transverse process (TP) view, 92 images of laminar view. 
Transverse scans included 195 images of pedicle view, and 238 images of vertebral bone view. In order 
to reduce over-fitting and to make pre-trained CNNs more robust for identification task, data 
augmentation was performed on the training dataset. Thus, the size of training dataset is increased by 
10 times (7,460 total scans). Nine additional new subjects were scanned in order to collect test dataset. 
From these nine subjects we collected 66 AP scan plane view images, 66 laminar view images, 39 TP 
view images, 126 pedicle view images, and 122 vertebral bone view images.  

The AP view scans, during longitudinal paramedian sagittal scanning approach, covers parts of the 
pars interarticularis and the inferior point of the superior articular facet. The transverse interlaminar 
view scans cover the top area of pedicle, referred as pedicle view scans. Therefore, AP and pedicle view 
scans can be used as reference for placement of pedicle screw from sagittal view and transverse view 
separately1 (Oh, et al., 2013). Our methods, explained in the below sections, are geared towards the 
classification of these two scans.  

2.2 Image Enhancement 
As a first step in our proposed work, we enhance the collected US data, denoted as US(x,y), by 

extracting image local phase information using band-pass quadrature filters (Hacihaliloglu, 2017).  
Real-time feedback of acoustic bone shadow information can guide the orthopedic surgeon to a 
standardized diagnostic viewing plane with minimal artifacts and can provide additional information 
for scan plane localization. Accordingly, the LP(x,y) image is used for the enhancement of bone shadow 
regions  (Hacihaliloglu, 2017b). Figure 1 displays the extracted LP(x,y) and multi feature image 
(MF(x,y)) obtained by combining US(x,y), LP(x,y) and BSE(x,y) images as three channel input. 
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Figure 1: From left to right: B Mode US image (US(x,y)), local phase image (LP(x,y)), bone shadow image 
(BSE(x,y)), and multi feature image (MF(x,y)) obtained by combining US(x,y), LP(x,y) and BSE(x,y) images as 
three channel input.  

Multi-modal deep learning algorithms have shown that cross modality feature learning results in the 
improvement of the learning task (Ngiam, et al., 2011). Consequently, we design a new multi-modal 
CNN architecture for processing the enhanced images, LP(x,y) and BSE(x,y), together with the B-mode 
US data, US(x,y). In order to show the improvements achieved, by using multi-modality deep learning, 
we investigate mono-modality CNN architectures as well.  

2.3 Scan Plane Identification Using Transfer Learning and Mono-
modality CNNs 

Transfer learning makes use of pre-trained CNNs to solve identification tasks in a new domain with 
a small dataset (Oquab, et al., 2014). Therefore, during this work we apply transfer learning from pre-
trained CNNs to the task of paramedian sagittal and transverse spinal US image scan plane 
identification. We use AlexNet (Krizhevsky, et al., 2012) and VGG-11 (Russakovsky, et al., 2014) pre-
trained networks. During transfer learning the last layers (freeze first two convolution layers) of these 
networks were re-trained using our collected US data. In order to investigate the improvements on 
classification, we also trained each network by using LP(x,y), BSE(x,y), and MF(x,y) images. Finally, 
we investigate the performance of the networks when all the layers are re-trained using our collected 
data.  

2.4 Scan Plane Identification Using Multi-modal CNNs 
Our proposed multi-modal CNNs architecture consists of two same convolutional network streams 

for processing US(x,y) images and the corresponding enhanced images (LP(x,y), BSE(x,y)), or multi-
feature image (MF(x,y)) respectively (Fig.2-a). Once the two individual stream networks are trained, 
the image features from these two trained individual architectures are concatenated together by a late 
fusion approach. During this work we investigated the following combinations as multi-modal data: (1) 
US(x,y)+LP(x,y), (2) US(x,y)+BSE(x,y), (3) US(x,y)+MF(x,y). Figure 2-a shows an example where two 
modified Alexnet architectures are joint together with a late fusion operation (FusCNN1). We have also 
constructed a second multi-modal CNN by using a network structure similar to VGG-11 (FusCNN2). 

2.5 Training 
The collected dataset is set up for 5-fold cross-validation by leave-one-out for each class of images. 

Furthermore, all the collect test datasets were also used for testing. We also made sure that during the 
5-fold cross-validation of the dataset the training and testing data did not include the same patient scans.  
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3 Results 
For all the investigated networks the highest identification accuracy was obtained when using the 

MF(x,y) images which was obtained by combining US(x,y), LP(x,y) and BSE(x,y) images as three 
channel input. Overall our proposed FusCNN1 architecture using US(x,y) and MF(x,y) as multi-modal 
data achieved the highest accuracy (Fig 2 b-c). The identification accuracy of VGG-11 for each type of 
image is significantly higher than the identification accuracy of Alexnet for same image type (paired t-
test p<0.005) (Fig.2-b).  FusCNN1 architecture, based on VGG-11, outperforms FusCNN2 which is 
based on Alexnet (Fig.2-c) for multi-modal fusion using US(x,y) and MF(x,y) images (paired t-test 
<0.05).  

4 Discussions and Future Work 
We presented a deep learning-based computational method for accurate and robust identification of 

pedicle plane from 2D US data. We have shown that by using multi-modality features classification 
accuracy improves significantly. In future, we will also investigate incorporation of data from more 
patients to increase the size of training data set, since it could yield higher classification accuracy.  

 

 
Figure 2: (a) Proposed multi-modal FusCNN1 architecture. For the architecture depicted in the above diagram the 
two multi-modal inputs are B mode US image, US(x,y), and corresponding enhanced bone shadow image, BSE(x,y). 
Each stream (blue, red) consists of five convolutional layers and two fully connected layers. Both streams coverage 
in one fully connected layer and a softmax classifier (gray). (b) Quantitative results obtained from the investigated 
mono-modality CNNs. (c) Quantitative results obtained from the proposed multi-modality CNNs. 
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