EPiC Series in Computing Sl
omputing

Volume 46, 2017, Pages 269-285

LPAR-21. 21st International Conference on Logic for m
Programming, Artificial Intelligence and Reasoning (‘\

Higher-order interpretations for higher-order complexity

Emmanuel Hainry!'? and Romain Péchoux!3
! Université de Lorraine, CNRS, Inria, Loria

2 hainry@loria.fr

3 pechoux@loria.fr

Abstract

We design an interpretation-based theory of higher-order functions that is well-suited
for the complexity analysis of a standard higher- order functional language a la ML. We
manage to express the interpretation of a given program in terms of a least fixpoint and
we show that when restricted to functions bounded by higher-order polynomials, they
characterize exactly classes of tractable functions known as Basic Feasible Functions at
any order.

1 Introduction

The study of program higher-order properties remains a challenging and open issue in computer
science. For example, Church-Turing’s thesis does not hold at higher order and there are no
complexity equivalences between computational models at higher order. As a consequence,
several distinct and most of the time incomparable classes are candidate for the notion of
polynomial time computation at higher order. Two of the most common definitions are the
class of polynomially computable real functions by Ker-I Ko [10] defined for first-order functions
over real numbers (that can be seen as order 2 functions over natural numbers) using machines
and that was extended by Cook and Kawamura for functions at any order [8], and the class of
Basic Feasible Functional (BFF;) at order ¢ by Irwin, Kapron and Royer [6].

As highlighted by Férée in his PhD manuscript [5], the classes BFF; cannot capture some
functions that can be considered to be polynomial time computable because they suffer from not
accounting for the size of their higher-order arguments. However they have been demonstrated
to be robust, they characterize exactly the well-known classes FPTIME and BFF at order 1 and
order 2, and have already been characterized in various ways, e.g. [4]. An important argument
in favor of the BFF; classes is that they offer the only programming language-based alternative
(BTLP, ITLP, ... - see [6] for an overview) for characterizing higher-order complexity. One
could argue that natural programs are hard to represent in such languages unless artificial size
bounds are provided. This is indeed an important issue that is solved by the present work which
will separate the language, a standard higher-order language a la ML, from the size bounds,
provided by static analysis.

For that purpose, we develop a theory of higher-order interpretations. These interpretations
are an extension of usual (polynomial) interpretation methods used to show the termination
of programs [12, 11]. However this theory is a novel and uniform extension to higher-order

T.Eiter and D.Sands (eds.), LPAR-21 (EPiC Series in Computing, vol. 46), pp. 269-285

Higher-order interpretations for higher-order complexity Hainry and Péchoux

functional programs: the definition works at any order on a simple programming language and
no extra constraints are required. The only restriction lies in the reduction strategy that is
enforced to be left-most outermost as our language includes operators with non-strict interpre-
tations that could break some of the system properties if a reduction occurs under a context.
We also show that these interpretations can be elegantly expressed in terms of a least fixpoint.
To our knowledge, there are only two interesting lines of work that are related to our approach.
In [16], Van De Pol introduced higher-order interpretation for showing the termination of term
rewrite systems. In [1], Baillot and Dal Lago introduce higher-order interpretations for complex-
ity analysis of term rewrite systems. These two studies are restricted to variant of higher-order
term rewrite systems whereas the current work applies to a functional language. While[16]
only deals with termination properties, [1] is restricted to first-order complexity in contrast,
our work characterizes higher-order complexity classes. Moreover [1] uses linear typing based
extra information on functions to be applied to defunctionalized higher-order terms whereas we
illustrate with an example in Section 6 that our methodology can be applied homogeneously to
such a case with no need of extra or external analysis.

After defining the functional language, we present the new notion of higher-order interpreta-
tion and its properties. Next, we briefly recall the BFF; classes and their main characterizations,
including a characterization based on the BTLP programming language of [6]. We then demon-
strate a characterization of these classes using higher-order polynomials: The soundness relies
on interpretation properties: the reduction length is bounded by the interpretation of the initial
term. The completeness is demonstrated by simulating a BTLP procedure, performing a com-
pilation from procedures to terms after some program transformations. In the last section of
the paper, we briefly discuss expressivity issues, the synthesis problem and possible extensions
to polynomial space.

2 Functional language

Syntax. The language considered in this paper consists in a lambda calculus with construc-
tors, primitive operators, a case construct for pattern matching and a letRec instruction for
(recursive) function definitions. It can be seen as an extension of PCF to inductive data types.
A term of our language is defined by the following syntax:

M,N:=x|c|op|MN|AxM|letRec f =M | case M of ci(X]) — My|...|cn (X)) — M,

In the above syntax, c,cy,--- , ¢, are constructor symbols of fixed arity and op is an operator
of fixed arity. Given a constructor or operator symbol b, we write ar(b) = n whenever b is of
arity n. Let x,f be variables of a fixed set X and % be a sequence of ar(c;) variables. The free
variables F'V (M) of a term M are defined as usual.

For simplicity, we will assume that bound variables have distinct names in order to avoid

name clashes. Finally, a closed term will consists in a term M such that FV (M) = () (i.e. with
no free variables).
A substitution {N;/x1, -+ ,N,/x,} is a partial function mapping variables x1,- - , %, to terms
Ny, -+ ,N,. As usual, the result of applying the capture-free substitution {Ny/xy, -+ ,N,/x,}
to a term M is denoted M{N;y /%1, -+ ,N,,/x,} or M{W/?} when the substituting terms are clear
from the context.

Semantics. The semantics of our language is described by a relation —s between two terms
defined by —+s=—3 U —case U —>op U —*1etRec

270

Higher-order interpretations for higher-order complexity Hainry and Péchoux

e — 3 is the standard S-reduction defined by:
Ax.M N —g M{N/x},
® —r.ase corresponds to pattern matching and is defined by:
case cj(N_;-) of ... | cj(x_>j) =M | ... —case M]{W/Q},
® —1otrec IS a fixpoint evaluation defined by:

letRec £ =M —>1gtpec M{letRec £ = M/f},

® —p is an operator evaluation defined by:
opMi...Mp —ep M,

provided that op is a primitive operator of arity n whose semantics [op], fixed by the
language implementation, is a total function that satisfies [op](My,...,M,) =M.

In tge particular case, where the pattern matching on the case first argument fails (i.e. =3j,M =
c;j(Nj)), we extend the relation —,, « € {3, case, letRec, op}, by:

if M —, N then case Mof ... —», case Nof

In what follows, we will fix a left-most outermost evaluation strategy with respect to
—{B,case,letRec,0p}, NOted =. Let =% be the k-fold self-composition of the relation = with
respect to such a strategy. Moreover, let [M =¥ N| be the number of reductions distinct from
—op in a given a derivation M =" N. [M =" N| < k always holds. [M] is a notation for the term
computed by M (if it exists), i.e. Fk,M =F [M] and AN, [M] = N. A (first-order) value v is defined
inductively by either v = c, if ar(c) = 0, or v = ¢ ¥, for ar(c) > 0 values ¥, otherwise.

Type system. We fix a set B of basic inductive types b described by their constructor set
Cy. For example, the type of natural numbers Nat is described by Cya = {0,+1}. The set of
simple types is defined by T::=b | T — T, with b € B. As usual — associates to the right.

In what follows, we will consider only well-typed terms. The type system assigns types to
all the syntactic constructions of the language and ensures that a program does not go wrong.
Notice that the typing discipline does not prevent a program from diverging. The type system
is described in Figure 1 and proves judgments of the shape I'; A F M :: T meaning that the
term M has type T under the variable and constructor (and operator) symbol contexts I' and
A respectively ; a variable (a constructor or operator symbol) context being a partial function
that assigns types to variables (respectively constructors or operators). As usual, the input
type and output type of constructors and operators of arity n will be restricted to basic types.
Consequently, their types are of the shape by — ... — b,, — b. A well-typed term will
consist in a term M such that §; A + M :: T (Consequently, it is mandatory for a term to be closed
in order to be well-typed).

Definition 1 (Order). Given a term M of type T, i.e. O;A M :: T, the order of M, denoted
ord(M), is equal to the order of T, denoted ord(T) and defined inductively by:

ord(b) =0, if b€ B,
ord(T — T') = max(ord(T) + 1, ord(T")) otherwise.

271

Higher-order interpretations for higher-order complexity Hainry and Péchoux

A(c)=T
IAbFc::T

A(op) =T

(Var) FAFoprT P

(Cons)

IAEM:T; — Ty NARENZT (App)
IAFMNG: T, PP

Fx:T;AFM:Ty
AR MM Ty — Ty

TfeT,AFM:T
I'AFletRecf=M =T

(Abs)

(Let)

[AFM:D F;Akci::gﬂb F,ﬁ::g;AFMi::T(lgign)
;A b case M of ci(x7) — My|...|cn(X) = My = T

(Case)

Figure 1: Type system

Example 1. Consider the following term M that maps a function to a list given as inputs:

letRec f = Ag.Ax.case x of c(y,z) = c(gy)(f g 2)
| nil — nil

Suppose that [Nat] is the base type for lists of natural numbers of constructor set Cyay =
{nil,c}. The term M can be typed by (Nat — Nat) — [Nat] — [Nat]. Consequently,
ord(M) = 2.

3 Interpretations

In this section, we define the interpretation tools that will allow us to control the complexity
of closed terms of our language.

3.1 Interpretations of types

We briefly recall some basic definitions that are very close to the notions used in denotational

semantics (See [17]) since, as we shall see later, our notion of interpretation also allows us

to obtain fixpoints. Let (N, < U, M) be the set of natural numbers equipped with the usual

ordering <, a max operator Ll and min operator M and let N be NU{T}, where Vn € N, n < T,

nUT=TUn=Tand nM T =T MNn = n. The strict order relation over natural numbers <

will also be used in the sequel and is extended in a somewhat unusual manner, by T < T.
The interpretation of a type is defined inductively by:

(o) = N, if b is a basic type,
(T — T) = (1) —T ('), otherwise,
where (T) —T (T’) denotes the set of total strictly monotonic functions from (T)) to (T'). A

function F' from the set A to the set B being strictly monotonic if for each XY € A, X <4 Y
implies F(X) <p F(Y), where <4 is the usual pointwise ordering induced by < and defined

272

Higher-order interpretations for higher-order complexity Hainry and Péchoux

by:

n<gmiffn<m
F<,_pGiff VX € A, F(X) <p G(X)

Example 2. The type T = (Nat — Nat) — [Nat] — [Nat] of the term letRec f = M in
FEzxzample 1 is interpreted by:

(1) = (N—"TN) —T (N —=TN).

In what follows, given a sequence ﬁ of m terms in the interpretation domain and a sequence
T of k types, the notation Re (T) means that both k =m and Vi € [1,m], R; € (Ty).

3.2 Interpretations of terms

Each closed term of type T will be interpreted by a functional in (T). The application is denoted
as usual whereas we use the notation A for abstraction on this function space in order to avoid
confusion between terms of our calculus and objects of the interpretation domain. Variables in
the interpretation domain will be denoted using upper case letters. Moreover, we will sometimes
use Church typing discipline in order to highlight the type of the bound variable in a lambda
abstraction.

An important distinction between the terms of our language and the objects of the inter-
pretation domain lies in the fact that beta-reduction is considered as an equivalence relation
on (closed terms of) the interpretation domain, i.e. (AX.F) G = F{G/X} underlying that
(AX.F) G and F{G/X} are distinct notations that represent the same higher-order function.
The same property holds for n-reduction, i.e. AX.(F X) and F denote the same function.
In other words, closed terms of the application domain are considered as extensional objects
whereas terms of the language are considered as intensional objects.

Since we are interested in complete lattices, we need to complete each type (T) by a lower
bound L () and an upper bound T as follows:

Lg=0 Te=T
J-QT—>T/|) = AX(]TDL(]T/[) TQT—>T’[) = AXQTDT(IT/D
We can show by an easy structural induction on types that for each F' € (T), L) <)
F <1 Tr)- Notice that for each type T it also holds that T) <¢r) Tr), by an easy induction.
In the same spirit, we extend inductively the max and min operators LI (and 1) over N to
arbitrary higher-order functions F, G of type (T) —T (T’) by:
M= (F G = AX® U™ (F(X),G(X))
nm—""(F) = AX™. 1™ (F(X), G(X))
In the following, we use the notations L, T, <, <, U and M instead of Ly, T(m, <> <(r)>
U™ and N respectively, when (T) is clear from the typing context.
Lemma 1. For each type T, ((T), <,U,M, T, L) is a complete lattice.

Proof. Consider a subset S of elements in (T) and define US = UpcsF. By definition, we have
F < US, for any F € S. Now consider some G such that for all F € S, FF < G. We have for all
Fe S, F(X)<G(X). Consequently, VX, S(X) =UpesF(X) < G(X) and S is a supremum.
The same holds for the infimum. O

273

Higher-order interpretations for higher-order complexity Hainry and Péchoux

Now we need to define a unit (or constant) cost function for any interpretation of type T in
order to take the cost of recursive calls into account. For that purpose, let + denote natural
number addition extended to N by ¥n, T +mn =n+ T = T. For each type (T), we define
inductively a dyadic sum function @) by:

XVNeryN=X+4Y
F&pg) G= AX®.(F(X) S G(X))

Let us also define the constant function ngr), for each type T and each integer n > 1, by:

TLN:TL

an*}T/D = AX(ITanT/D

Once again, we will omit the type when it is unambiguous using the notation né® to denote the
function np)@r) when (T) is clear from the typing context. We have the following result:

Lemma 2. Forall F, F<1®F.

Proof. By induction on the strict order <¢r). For the base case, we have n <5 lg®gn =n+1.
Suppose it holds for any order < k and take an order k + 1 function F of type T — T’. For
all X of type T, we have that F'X <) 1) ©) F'X, by Induction Hypothesis. Consequently
F=AX.FX <(r—T1) AX.qu/D Sy FX = 1gor) Spor) F- O]

Now we are ready to define the notions of variable assignment and interpretation of a term
M:

Definition 2 (Interpretation). A variable assignment, denoted p, is a map associating to each
f € X of type T a variable F of type (T).

Given a variable assignment p, an interpretation is the extension of p to well-typed terms,
mapping each term of type T to an object in (T) and defined in Figure 2, where (op), is a
sup-interpretation, i.e. a total function such that:

WM, ..., VMy, (op My ... Mp)), > ([op](Mi, ..., Mp)),.

See [14] for more details about sup-interpretations.

As operator sup-interpretations are fixed, an interpretations should also be indexed by some
mapping m assigning a sup-interpretation to each operator of the language. To simplify the
formalism, we will omit this mapping in what follows.

Notice that, contrarily to other program constructs, operators may have non monotonic
interpretations. This is the reason why we have fixed a left-most outermost strategy (we never
reduce the operator operands) and operators are supposed to be total functions.

3.3 Existence of an interpretation

The interpretation of a term is always defined. Indeed, in Definition 2, (letRec £ = M),
is defined in terms of the least fixpoint of the function AX™.1 &) ((A(£),.(M),) X) and
consequently, we obtain the following result as a direct consequence of Knaster-Tarski [15, 9
Fixpoint Theorem:

Proposition 1. Fach term M of type T has an interpretation.

274

Higher-order interpretations for higher-order complexity Hainry and Péchoux

o (f), =p(f), iffeX,

) (]ch =1 [S2) (AXI AXn Z:L:l Xz)y if ar(c) =n,

o (AxM), =1& (Al),.(M),),

_>
o (case Mof ci(X1) = My|..|cn (X)) = Mn), = 10 Ui<icn{(M) ,{ R/

—
(]XiDp
(e, Ri,

VI VR, st. (M), >

(LetRec £ =M), = N{F € (T) | F > 1 & (A(£),-(M),)F}.

Figure 2: Interpretation of a term of type T

Proof. By Lemma 1, L = ((T), <,U, M, T, L) is a complete lattice. The function
F=AXD1@m (Al£),-M,)X): L~ L

is monotonic. Indeed, both constructor terms and letrec terms of type (T) are interpreted
over a space of monotonic functions (T). Moreover monotonicity is preserved by application,
abstraction and the M and U operators. Applying Knaster-Tarski, we obtain that F' admits a
least fixpoint, which is exactly M{X € (T) | X > FX}. O

3.4 Intermediate lemmata

We now show intermediate lemmata by structural induction on terms

Lemma 3. For all M,N,x such thatx = T;AFM: T, 0; AN T, we have (M), {(N),/(x),} =

(M{N/x}),-

Lemma 4. For all M,N,x such that x = T;A F M= T, 0;A F N 2 T, we have (Ax.M N), >

(M{N/x3) -

Proof.
(AxM N), = (Ax.M),(N), By Definition 2
=A(x),.1 e M),(N), By Definition 2
=1& M), {(N),/(x),} By definition of =
=1 (M{N/x}), By Lemma 3
> (M{N/x}), By Lemma 2
and so the conclusion. O

275

Higher-order interpretations for higher-order complexity Hainry and Péchoux

Lemma 5. For all M, we have: if M = N then (M), > (N),. Moreover if M = N| = 1 then
(M), > (ND,.
Proof. If M= N| =0thenM=opM; ... M, —op [op](Mi,...,M,) = N, for some operator op and

terms My, ..., M, and consequently, by Definition of interpretations we have (op My ... M), >
(][[Op]] (Mlv s 7Mn)DP'

If [M = N| = 1 then the reduction does not involve a —4, (i.e. an operator evaluation). By
Lemma 4, in the case of a -reduction and, by induction, Lemmata 3 and 2 and Definition 2 for
the other cases. e.g. For a letrec reduction, we have: if M = letRec £ =M —jgpec M{M/f} =N
then:

M), =T{F € (T) | F =10 (A(£),-(N),)F'}
> T{1 @ A(£),. (N, F' | F = 1@ (A£),.(N),) F}
2 1B A, (W), M{E | F =1 (A(£]),-(N),) F}
= 1@ (A(£),-(N),) (M),
=1 (]NDP{(]MDp/qup}
=1 (N{M/£}),, by Lemma 3
> (N{M/£f}),, by Lemma 2
The first inequality holds since we are only considering higher-order functions F' satisfying

F >1®(A(£),.(N),)F. The second inequality holds because A(£f]),.(N), is a monotonic function
(as the interpretation domain only consists of such functions). O

Corollary 1. For all terms, M, W, such that 0; A+ M Yo T, if M W =% W then (]MDPQWDP >
M =M@ (W),.

As basic operators can be considered as constant time computable objects the following
Corollary also holds:

Corollary 2. For all terms, M, W, such that 0; A+ M W b, with b € B, if (M W[)p %+ T then
terminates in a number of reduction steps in O((M W[)p).

The size |v| of a value v is defined by |c| = 1 and |M N| = |M| 4 |N|.
Lemma 6. For any value v, such that O; A+ v :: b, with b € B, we have (v) = |v|.

Example 3. Consider the following term M :: Nat — Nat computing the double of a unary
number given as input:

letRec f = Ax.case x of +1(y) = +1(+1(f y))
|0—0

We can see in Figure 3 how the interpretation rules of Figure 2 are applied on such a term. At
the end we search for the minimal strictly monotonic function F greater than AX.(5® (F (X —
1))) U4, for X > 1. That is AX.5X @ 4. Notice that such an interpretation is not tight as one
should have expected the interpretation of such a program to be AX.2X @k for some constant
k. This interpretation underlies that each iteration step, distinct from the base case, counts for
5 (1 for the recursive call, 1 for the application, 1 for pattern matching and 2 for the extra-
constructors added) and the base case counts for 4 (letrec call, application, pattern matching
and one constructor). Consequently, we have a bound on both size of terms and reduction length
though this upper bound is not that accurate. This is not that surprising as this technique suffers
from the same issues as methods based on first-order interpretations.

276

Higher-order interpretations for higher-order complexity Hainry and Péchoux

(M),

=M{F e(T) | F>1® (A(f),.(\x.case x of +1(y) — +1(+1(f y))| 0 — 0),)F}

={F e(T) | F>2& ((A(f),.-A(x),.(case x of +1(y) — +1(+1(f y))| 0 = 0),)F)}
=T{F € (1) | F =3 (AEDp-AEDp- (L), > (+1(500, (F1(+1(E ¥)))p) U (W), > g0, (0D,)) F) }
=M{F e (T) | F>3& (A(£)p-Alx)p-(Uw),>1000),2 D ((£)p (7)0)) U (U, >11))F)}
=M{F e (T) | F23® (A)p- (U, 210,29 (F (¥),) U (1)}

={F e (T) | F=3® (Ax),.2e (F ((x), —1) (1)}, (x),—-12=0

=M{Fe(T) | F>AX.e(F (X-1))u4)}

=AX5X +14

Figure 3: Example of interpretation

3.5 Relaxing interpretations

For a given program it is somewhat difficult to find an interpretation that can be expressed in
an easy way. This difficulty lies in the homogeneous definition of the considered interpretations
using a max (for the case construct) and a min (for the letrec construct). Indeed, it is sometimes
difficult to eliminate the constraint (parameters) of a max generated by the interpretation of a
case. Moreover, it is a hard task to find the fixpoint of the interpretation of a letrec. All this
can be relaxed as follows:

e finding an upper-bound of the max by eliminating constraint in the case construct inter-
pretation,

e taking a particular function satisfying the inequality in the letrec construct interpretation.

In both cases, we will no longer compute an exact interpretation of the term but rather an
upper bound of the interpretation.

Lemma 7. Given a set of functions S and a function F' € S, the following inequality always
holds F > T{G|G € S}.

This relaxation is highly desirable in order to find “lighter” upper-bounds on the interpre-
tation of a term. Moreover, it is a reasonable approximation as we are interested in worst case
complexity.

Obviously, it is possible by relaxing too much to attain the interpretation T), which gives
nothing interesting.

Example 4. Consider the term M of Example 1:
letRec f = Ag.A\x.case x of c(y,z) = c(g y)(f g 2)
| nil — nil

We can see in the first four lines of Figure 4 how the interpretation rules of Figure 2 are applied
on such a term.

In the penultimate line, we obtain an upper-bound on the interpretation by approximating
the case interpretation, substituting (x), — 1 to both (y), and (z),. This is the first step of

277

Higher-order interpretations for higher-order complexity Hainry and Péchoux

),
=M{F e(T) | F>1& (A(f),.(\g-\x.case x of c(y,z) = c(g y)(f g z)| nil = nil),)F}
=T{F | F =3 & ((A£),-Alghp-Alx),-(case x of c(y,z) = c(g y)(f g 2)[nil — nil),)F)}
=T{F | F =4 & ((A(£),-Alghp-AlxDp- U ((nil)p, Uiy, > ey.2)), ((c(g ¥)(E & 2)Dp))) F)}
=M | F >4 ((A£),-Ale)o- ADp- U (1, U, >1090,+ 20, (1 © (&) (9)5)

+ ((£D, (&b (2D0))))E)}
=M{EF [F =53 (Me)p- A U, 210050+ 1210, (((8)p (9)5) +
SIHE [F =50 (Mg)p-AlD,-((le)p ((xDy — 1)) + (F (&) ((xD, —1))))}
< Alg)p-Ax)p-(5® (g (x)p)) x (x]p

=
[0)0]
-
hs)
—
N
-
)
N2
N
N
—

X

Figure 4: Example of interpretation

relaxation where we find an upper bound for the maz. The inequality:

a = U, >100) 4+, F ((¥Dp: (2)p) < U, >1000,.0),>106)0, F ((¥)p (2D) =0

holds for any monotonic function F. Consequently, U{F | F > b} <U{F | F > a}.

In the last line, we obtain an upper-bound on the interpretation by approximating the le-
trec interpretation, just checking that the function A(g),.-A(x),.(5® ((g), (x),)) x (x),, where
X is the usual multiplication symbol over natural numbers, satisfies the inequality F' > 5 @

(A(ghp-Ax)p-(((9)p ((x)p — 1)) + (F (g)p ((xDp —1))))-

3.6 Higher-Order Polynomial Interpretations

At the present time, the interpretation of a term of type T can be any total functional over (T).
In the next section, we will concentrate our efforts to study polynomial time at higher order.
Consequently, we need to restrict the shape of the admissible interpretations. For that purpose,
we introduce higher-order polynomials which are the higher-order counterpart to polynomials
in this theory of complexity.

Definition 3. Let P; denote a polynomial of order i and let X; denote an order i variable.
Higher-order (order 1 and order i+1) polynomials can be defined by the following grammar:

P = c‘X0|P1 + P1|P1 X Py
Pii1 2= Pi|Pii1 + Pija| P X P | X (Piga)

where ¢ represents constants in N.

Clearly, the set of order 7 polynomials is strictly included in the set of order i+ 1 polynomials
by the above definition. Moreover, by definition, a higher-order polynomial P;;; has variables

of order at most 7. If ? is the sequence of such variables ordered by decreasing order, we will

treat the polynomial P;,; as total functions AY.PZH().
We are now ready to define the class of functions computed by terms admitting an inter-
pretation that is (higher-order) polynomially bounded:

Definition 4. Let ¥P;, i > 0, be the class of polynomial functionals at order i that consist in
functionals computed by closed terms M over the basic type Cyay and such that:

278

Higher-order interpretations for higher-order complexity Hainry and Péchoux

Procedures) 3 P := Procedure v™ %X 7P(yTt | ™) P* V I* Return o°
1 » »Yn T
(Declarations) 5 V = Var % ... o2;
Instructions) > I w=1":= E; | Loop v} with ¢’ do {I*
0 1
(Expressions) 3 E =10 [od o) | g — o) | vd#D | 0T X TR (AT AT
(Arguments) 3 A =0 | dvy,...,v.0(v] ... 00) with v € {v1,...,v,}

Figure 5: BTLP grammar

e ord(M) =14

o (M), is bounded by an order i polynomial (i.e. 3P;, (M), < P;).

4 Safe Feasible Functionals

The class of tractable type 2 functionals has been introduced by Constable [3] and Mehlhorn [13].
It was later named BFF for the class of Basic Feasible Functionals and characterized in terms
of function algebra [4, 7]. We choose to define the class through a characterization by Bounded
Typed Loop Programs from [6] which extends the original BFF to any order.

4.1 Basic Feasible Functionals and Bounded Typed Loop Programs

Definition 5 (BTLP). A Bounded Typed Loop Program (BTLP) is a non-recursive and well-
formed procedure defined by the grammar of Figure 5.

The well-formedness assumption is given by the following constraints: Each procedure is
supposed to be well-typed with respect to simple types over D, the set of natural numbers of
dyadic representation over {0,1} (0 =€, 1=0,2=1, 3 =00, ...). When needed, types are
explicitly mentioned in variables’ superscript. FEach variable of a BTLP procedure is bound
by either the procedure declaration parameter list, a local variable declaration or a lambda
abstraction. In a loop statement, the guard variables vy and v; cannot be assigned to within
I*. In what follows v; will be called the loop bound.

The operational semantics of BTLP procedures is standard: parameters are passed by call-
by-value. +, — and # denote addition, proper subtraction and smash function (i.e. z#y =
212Xyl the size |x| of the number x being the size of its dyadic representation), respectively.
Each loop statement is evaluated by iterating |vg|-many times the loop body instruction under
the following restriction: if an assignment v := F is to be executed within the loop body, we
check if the value obtained by evaluating E is of size smaller than the size of the loop bound
|vi]. If not then the result of evaluating this assignment is to assign 0 to v.

We are now ready to provide a definition of Basic Feasible Functionals at any order:

Definition 6 (BFF;). For any i > 1, BFF; is the class of order i functionals computable by a
BTLP procedure'.

LAs demonstrated in [6], all types in the procedure can be restricted to be of order at most i without any
distinction.

279

Higher-order interpretations for higher-order complexity Hainry and Péchoux

It is straightforward that BFF; = FPTIME (the class of first-order polynomial time com-
putable functions) and BFFy=BFF.

4.2 Safe Feasible Functionals

Now we restrict the domain of BFF; classes to inputs in BFFy for k < i, the obtained classes are
named SFF for Safe Feasible Functionals.

Definition 7 (SFF;). SFF; is defined to be the class of order 1 functionals computable by BTLP
a procedure and, for any i > 1, SFF;11 is the class of order i + 1 functionals computable by
BTLP a procedure on the input domain SFF;. In other words,

SFF1 =BFF1,
Vi > 1, SFF; 11 =BFFi{1spr;

This is not a huge restriction since we want an arbitrary term of a given complexity class
at order ¢ to compute over terms that are already in classes of the same family at order k, for
k < i. Consequently, programs can be built in a constructive way component by component.
Another strong argument in favor of this domain restriction is that the partial evaluation of a
functional at order 7 will, at the end, provide a function in N — N that is shown to be in BFF;
(=FPTIME).

5 A characterization of Safe Feasible Functionals of any
order

Theorem 1. For any order i > 1, the class of functions in FP; over FPy, k < i, is exvactly the

class of functionals in SFF;. In other words, SFF; = FP;j(u,.,FP,), for all i > 1.

Proof. This Theorem is proved by induction on the order. For any order i, it can be split in
two directions called Soundness(i) and Completeness(i):

e Soundness(i): Any term M whose interpretation is bounded by an order ¢ polynomial,
computes a function in SFF;.

e Completeness(i): Any BTLP procedure P of order i can be encoded by a term M computing
the same function and admitting a polynomial interpretation of order .

We start to show that Soundness(1) holds. Consider that the term M has an interpretation
bounded by a polynomial P;. For any value v, we have, by Corollary 1, that the computing
time of M on input v bounded by (M v|),. Consequently, using Lemma 6, we have that:

M o), = (M), (v), = (M), (o)) < Pr(fo])-

Hence M belongs to FPTIME = SFF;.

Completeness(1) holds as a direct consequence of Theorem 4 of [2] showing the completeness
of polynomial interpretations of Kind(0) for confluent TRS with respect to the complexity class
FPTIME. Kind(0) means that constructor symbol interpretations are enforced to be linear
functions of the shape X7 ; X; +«, a > 1. Just notice that interpretations in our framework are
of Kind(0) and that each term rewrite rule admitting an interpretation can be encoded easily
into an equivalent term of order 1 admitting an interpretation (up to some additive constant).

280

Higher-order interpretations for higher-order complexity Hainry and Péchoux

Now, we suppose that Soundness(k) and Completeness(k) hold for any k < i. Let M be
an order ¢ + 1 term of interpretation (M), bounded by the order ¢ + 1 polynomial P;i4, i.e.
(M), < Pi41. We know that on input N, M normalizes in O((M N),), by Corollary 1. Since N
computes a functional [N] € SFF;, by induction (Completeness(i)) there is a polynomial P;
such that (N), < P;. Consequently, we obtain that the maximal number of reduction steps is
bounded polynomially in the input size by:

M N, = (M), (N), < Pig10P;

that is, by a polynomial @;y; of order i + 1 defined by Q;11 = P41 o P;. Consequently,
Soundness(i + 1) holds. For Completeness(i + 1), we demonstrate using program transforma-
tions that any loop can be encoded by a first-order term whose runtime remains polynomial in
the input size. For that purpose, we proceed in two steps:

1. first, we transform each BTLP procedure into a standard loop-based higher-order imper-
ative procedure with explicit bounds, no nested loops and no procedure call. Instead of
being checked dynamically the “with v?” bound is performed using a local chkbd operator
in SFF; provided that the input E is computable in polynomial time and whose semantics

is defined by:

[IB] i |[E]l < Jalx € X
chikbd(F, X) = { 0 otherwise
where [E] is the dyadic number obtained after the evaluation of expression E and X is
a finite set of variables. For example, Loop = with w do {y := y + z;} is transformed
into loop z{y := chkbd(y + z,{w});}. Figures 6 and 7 present some translations to
get rid of, respectively, nested loops and sequential loops. They use the same operators
as BTLP (in particular #), but also standard multiplication x. They also use a new
cut operator that is defined as removing the first character of its argument. Last, the
notation (1), which propagates to all assignments in I translating them using chkbd such
as ¢ := FE (resp. x := chkbd(E, X)) being translated into x := chkbd(FE, {v}) (resp.
x := chkbd(E, {v} U X)). Procedure calls are eliminated by unfolding procedure bodies
after a careful alpha-conversion. Nested loop elimination terminates as each application
consumes one loop while unfolding terminates as there are no recursive calls by definition
of BTLP. Notice that this program transformation preserves both the semantics and the
asymptotic complexity of the initial BTLP procedure.

2. second, we compile each standard loop-based higher-order imperative procedure into a
functional term. For that purpose, we suppose that the target term language includes
constructors for dyadic numbers (¢, 0 and 1), a constructor for tuples (...), all the im-
perative operators as basic prefix operators (+, -, #, ...), min operators M2 computing
the min of the sizes of n dyadic numbers and a chkbd operator of arity 2 such that
[chkbd(M, N)] = [M] if |[M]] < |[N]| (and € otherwise). All these operators are extended
to be total functions in the term language: they return e on input terms for which they
are undefined. Moreover, we also require that each procedure given as input is alpha
renamed so that all parameters and local variables of a given procedure have the same
name and are indexed by natural numbers. The compiling process is described in Fig-
ure 8, defining comp, comi™, come that respectively compile procedures, instructions and
expressions. The comi compiling process is indexed by the number of variables in the
program n. For notational convenience, let A{vi,...,v,). be a shorthand notation for

281

Higher-order interpretations for higher-order complexity

Hainry and Péchoux

BTLP Standard loop-based procedure
Loop x with w { total := wXy; dx := 1;
I gt := total; gy := y;
Loop y with z { 1b := x#total;
I3 loop 1b {
} if dx {7}
I; if gy {32 gy := cut(gy);}
¥ if dx {dx := ¢; (I}),}
if gt {gt := cut(gt);}
else {gt := total; gy := y; dx := 1;}
}

Figure 6: Rewriting nested loops. The variables dx, total, gt, gy and 1b are fresh local variables.

BTLP Standard loop-based procedure

Loop x; with w; { gx := x1; dy := 1; 1lb := x;XXx3;

I7 loop 1b {
} if gx {gx := cut(gx); U)y7
I3 else {
Loop x3 with wg { if dy {dy := ¢; I;}

I3 else {(I5)y,}
} }

Figure 7: Rewriting sequential loops. Variables gx, dy and 1b are fresh variables.

As.case s of (v1,...,v,) — and let 77 be a shorthand notation for the r-th projection
Av1, ..., Un).v.. The compilation procedure works as follows:

e Any loop-based procedure of the shape
v(v1,...,0y) Var vy, ...,0,; I* Return v,

will be transformed into a term of type 7 X ... X 7, — 75, provided that 7; is the
type of v; and that 7 X ... X 7, is the type for n-ary tuples of the shape (vy,...,v,).

e Each instruction within a procedure of type 71 X ... X 7, — 7, will have type
Ty X ... X Tp = T1 X ... X T,. Consequently, two sequential instructions Iy I within
a procedure of n variables will be compiled into a term application of the shape
comi™(I) comi™(1I) and instruction type is preserved by composition.

e For loop compilation, we make use of a letrec of type D — 7 X ... X T, = 71 X ... X Ty
The first argument is a counter and is fed with a copy of the loop counter v; so that
the obtained term has the expected type 74 X ... X T, = T4 X ... X Tp.

Notice that this compilation preserves both the semantics and its asymptotic complexity
of the initial BTLP procedure.

282

Higher-order interpretations for higher-order complexity Hainry and Péchoux

comp(Procedure v(vi,...,vy) Var vm41,...,vn; I Return v,) = As.m, (comi™(I™) s)
comi”(Iy ... Ix) = comi™(Ix) ... comi™(Iy)
comi”(v; := E;) = Mv1,...,0n).{v1,...,0i—1,come(E),vit1,...,Un)
cons” (loop v {I'}) = Aun....,vn).((FHES T AMARcse ok Ty)
comi™(if v} { IT } else { I3}) = Mv1,...,vn).case v; of € — comi™(I3) | j(t) — comi”(I})
with j € {0,1}

come(c) =¢, ce€{1,v"}

come(vg op v]) = op vo v1, op € {+,—, #, x}

come(cut(v”)) = cut v

come(chkbd(E, {vj,...,vj})) = chkbd come(E) (M2 vj, ... vj.)
come(v(A1,...,An)) =v come(A;) ... come(Ay,)
come(Av1, . . ., Up (V] .. U)) = A1. . v (L (V) L vl))

Figure 8: Compiler from loop programs to terms

Finally, we have transformed a BTLP procedure into a term preserving the semantics and
the asymptotic complexity (reduction length). Moreover, each higher-order expression in a
tuple can be encoded by a first-order term using defunctionalization and we let the reader
check that the operators in {+, —, #, x, cut,?, chkbd} admit the following polynomial sup-
interpretations (+), = A XAY.X +Y, (), = AXAY.X, (#), = AXAYX xY, (X), =
AXAY.X+Y, (cut), = AX.LU(X—-1,0), (MP), =AX;..... AX,. TN (Xy,...,X,), (chkbd), =
AX.AYY. By Completeness(1), there exists a term computing the same function and admit-
ting a polynomial interpretation. O

Consider the following simple BTLP procedure as an illustrative example for the program
transformation in the proof of Theorem 1:

Procedure mult(x,y)
Var z,b; z := €; b := x#y; Loop x with b do{z := z+y;}
Return =z

The transformation process is easy as there is no procedure call and no nested loop and we
obtain the following loop program:

Procedure mult(x,y)
var z,b; z := ¢€¢; b := x#y; loop x {z := chkbd(z+y,{b});}
Return =z

As already stated, the semantics and asymptotic complexity remain preserved and, in a next
step, this loop program is compiled modulo a-equivalence into:

M.Ms.case t of ¢ — s)x
it — ftM3)
()‘<va’ Z,b>~<X,Y»Z» # x Y>(>‘<X7yvzvb>'<xvyv € b> 5))

Ao Ax,y,2,b). | letRec f =

283

Higher-order interpretations for higher-order complexity Hainry and Péchoux

where M = A\(x,7,2z,b).(x,y, chkbd (+ z y) ('} b),b). The semantics and asymptotic complexity
are still preserved as the recursive call iterates at most |z| times.

6

Results and perspectives

In this paper, we have introduced a theory for higher-order interpretations that can be used
to deal with higher-order complexity classes. This is a novel approach but there are still some
important issues to discuss.

284

e Expressivity: the expressivity of interpretations is as usual their main drawback: As for

first-order interpretations, a lot of interesting terms computing polynomial time functions
will not have any polynomial interpretation, i.e. its interpretation will sometimes be T,
although the function will be computed by another algorithm (term) admitting a finite
interpretation. It should be possible to relax the tool and to extend it to more complex
data structures such as streams and infinite trees. At least, the presented paper has
shown that the tool expressivity can be extended to higher order. Moreover, we manage
to give a uniform framework for complexity analysis of exponential programs behaving
polynomially. As an illustrative example, consider the term M by:

letRec fold = Ag.\x.case x of c¢(y,z) — g (fold g z)| nil — nil
The interpretation of M has to satisfy the following inequality:

Clearly, this inequality does not admit any polynomial interpretation as it is at least
exponential in X. Now consider the term M (Ax.1 + (1 + (x)). The term Ax.1+ (1 + (x))
can be given the interpretation AX.X @ 3. We have to find a function F' such that
FAXX®3)>AY4a (11U Uys1(F (AXX®3) (Y —1))@3)). This inequality is
satisfied by the function F' such that F' (AX.X ®3) Y = (7 xY) @4 and consequently
M has an interpretation. This highlights the fact that a term may have an interpretation
even if some of its subterms might not have any. As expected, any term admitting an
interpretation of the shape AX.X @ 3, for some constant 3, will have an interpretation
when applied as first operand of this fold function.

Synthesis: it has been well known for a long time that the synthesis problem that consists
in finding the sup-interpretation of a given term is undecidable in general for first-order
terms using interpretations over natural numbers (see [14] for a survey). As a consequence
this problem is also undecidable for higher order. However it is also well-known that it
will become decidable if programs are defunctionalized (up to a first-order term) using
polynomial functions over real numbers.

Space: space issues were not discussed in this paper as there is no theory for higher-order
polynomial space. In analogy with the usual first-order theory, a suitable definition for
higher-order space complexity classes could be to consider terminating terms admitting
a nonstrict polynomial interpretation. By nonstrict, we mean, for example, that the last
rule of Figure 2 can be replaced by:

(letRec £ =M), = 1 & N{F € (T) | F > (A(£),.(M),)F}

Higher-order interpretations for higher-order complexity Hainry and Péchoux

Thus termination is lost as the term letRec £ = £ could be interpreted by 1®AF.F. This
is the reason why we need to restrict the class to terminating terms. However a result
equivalent to Lemma 5 holds: we still keep a non-strict upper bound on the interpretation
of any derived term.

Acknowledgments. The authors would like to thank the anonymous reviewers for their
comments and suggestions to improve this paper.

References

(1]
2l

(9]
[10]
(1]
[12]
(13]
[14]
[15]

[16]

(17]

Patrick Baillot and Ugo Dal Lago. Higher-order interpretations and program complexity. Inf.
Comput., 248:56-81, 2016.

Guillaume Bonfante, Adam Cichon, Jean-Yves Marion, and Hélene Touzet. Algorithms with
polynomial interpretation termination proof. J. Funct. Program., 11(1):33-53, 2001.

Robert L. Constable. Type two computational complexity. In Proc. 5th annual ACM Symposium
on Theory of Computing, pages 108-121. ACM, 1973.

Stephen A. Cook and Bruce M. Kapron. Characterizations of the basic feasible functionals of
finite type. In Foundations of Computer Science, pages 154-159. IEEE Computer Society, 1989.

Hugo Férée. Complexité d’ordre supérieur et analyse récursive. (Higher order complexity and
computable analysis). PhD thesis, University of Lorraine, Nancy, France, 2014.

Robert J. Irwin, Bruce M. Kapron, and James S. Royer. On characterizations of the basic feasible
functionals (part II). Technical report, Syracuse University, 2002.

Robert J. Irwin, James S. Royer, and Bruce M. Kapron. On characterizations of the basic feasible
functionals (part I). Journal of Functional Programming, 11(1):117-153, 2001.

Akitoshi Kawamura and Stephen A. Cook. Complexity theory for operators in analysis. In
Leonard J. Schulman, editor, Proc. 42nd ACM Symposium on Theory of Computing, pages 495—
502. ACM, 2010.

William A. Kirk and Brailey Sims. Handbook of metric fized point theory. Springer, 2001.
Ker-1 Ko. Complexity Theory of Real Functions. Birkhduser, 1991.
Dallas S. Lankford. On proving term rewriting systems are noetherian. Technical report, 1979.

Zohar Manna and Steven Ness. On the termination of Markov algorithms. In Third Hawaii
International Conference on System Science, pages 789-792, 1970.

Kurt Mehlhorn. Polynomial and abstract subrecursive classes. In Proc. 6th annual ACM Sympo-
sium on Theory of Computing, pages 96—109. ACM, 1974.

Romain Péchoux. Synthesis of sup-interpretations: a survey. Theor. Comput. Sci., 467:30-52,
2013.

Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific journal of
Mathematics, 5(2):285-309, 1955.

Jaco Van de Pol. Termination proofs for higher-order rewrite systems. In International Work-
shop on Higher-Order Algebra, Logic, and Term Rewriting, volume 816 of LNCS, pages 305-325.
Springer, 1993.

Glynn Winskel. The formal semantics of programming languages: an introduction. MIT press,
1993.

285

	Introduction
	Functional language
	Interpretations
	Interpretations of types
	Interpretations of terms
	Existence of an interpretation
	Intermediate lemmata
	Relaxing interpretations
	Higher-Order Polynomial Interpretations

	Safe Feasible Functionals
	Basic Feasible Functionals and Bounded Typed Loop Programs
	Safe Feasible Functionals

	A characterization of Safe Feasible Functionals of any order
	Results and perspectives

