
An NC Algorithm for Sorting Real Numbers

in 𝑶(
𝒏𝒍𝒐𝒈𝒏

√𝒍𝒐𝒈𝒍𝒐𝒈𝒏
) Operations

Yijie Han, Sneha Mishra and Md Usman Gani Syed
 School of Computing and Engineering

University of Missouri at Kansas City

Kansas City, MO 64110, USA
hanyij@umkc.edu, smccr@mail.umkc.edu, gmsc8c@mail.umkc.edu

Abstract

We apply the recent important result of serial sorting of real numbers in 𝑂(𝑛√𝑙𝑜𝑔𝑛) time to

the design of a parallel algorithm for sorting real numbers in O(log1+n) time and 𝑂(
𝑛𝑙𝑜𝑔𝑛

√𝑙𝑜𝑔𝑙𝑜𝑔𝑛
)

operations. This is the first NC algorithm known to take o(nlogn) operations for sorting real

numbers.

Keywords: Parallel algorithms, sorting, sort real numbers, complexity.

1 Introduction

It is known widely that serial comparison sorting takes (nlogn) time [4]. Although integer sorting

can outperform the (nlogn) lower bound for sorting integers [2,5,7,8,9,10], these algorithms generally

do not apply to the problem of sorting real numbers. It has been known that integers can be sorted in

O(nloglogn) time and linear space [7,8], the O(nlogn) time bound remains for sorting real numbers ever

since. Only very recently Han showed that real numbers can be converted to integers for the sorting

purpose in 𝑂(𝑛√𝑙𝑜𝑔𝑛) time [6], thus enabling the serial sorting of real numbers in 𝑂(𝑛√𝑙𝑜𝑔𝑛) time.

Parallel sorting algorithms for sorting real numbers run on the PRAM (Parallel Random Access

Machine) model are known [1,3]. The AKS sorting network [1] can be transformed into an EREW

(Exclusive Read Exclusive Write) PRAM algorithm with O(logn) time and O(nlogn) operations. Cole’s

parallel merge sort [3] sorts n numbers in O(logn) time using n processors on the EREW PRAM. On

the CRCW (Concurrent Read Concurrent Write) PRAM Cole showed [3] that his parallel merge sort

can run in O(logn/loglog(2p/n)) time using p processors. Also see [12].

EPiC Series in Computing

Volume 58, 2019, Pages 93–98

Proceedings of 34th International Confer-
ence on Computers and Their Applications

G. Lee and Y. Jin (eds.), CATA 2019 (EPiC Series in Computing, vol. 58), pp. 93–98

There are also parallel algorithms for integer sorting[2,5,7,8,9,10]. In the case of integer sorting the

operation bound can be improved to below O(nlogn). In particular, [9] presents a CRCW PRAM integer

sorting algorithm with O(logn) time and O(nloglogn) operations and [8] presents an EREW PRAM

integer sorting algorithm with O(logn) time and 𝑂(𝑛√𝑙𝑜𝑔𝑛) operations.

For sorting real numbers the previous best serial algorithm sorts in O(nlogn) time. It was also known

that for comparison sorting (nlogn) is the tight lower bound. Thus if we use comparison sorting to

sort real numbers then in serial algorithms we cannot avoid the (nlogn) time bound and in parallel

algorithms we cannot avoid the (nlogn) operation bound. In the past no other sorting methods are

known to sort real number in less than O(nlogn) time and comparison sorting remained the norm for

sorting real numbers.

However the situation is recently changed completely as Han found a way to convert real numbers

to integers for sorting purpose and he showed that real numbers can be sorted in 𝑂(𝑛√𝑙𝑜𝑔𝑛) time [6].

This result enables us to move further to improve the operation bound of parallel algorithms for sorting

real numbers to below O(nlogn), as in the past all parallel algorithms for sorting real numbers has an

operation bound at least O(nlogn).

In this paper we will apply the 𝑂(𝑛√𝑙𝑜𝑔𝑛) time serial real number sorting algorithm to the design

of an NC algorithm with O(log1+n) time and 𝑂(
𝑛𝑙𝑜𝑔𝑛

√𝑙𝑜𝑔𝑙𝑜𝑔𝑛
) operations on the CREW (Concurrent Read

Exclusive Write) PRAM. NC algorithms are parallel algorithms with polylog time and polynomial

operations. Algorithm in [6] is an inherently serial algorithm without much parallelism within it. Here

we use it in the design of an NC algorithm with O(log1+n) time and 𝑂(
𝑛𝑙𝑜𝑔𝑛

√𝑙𝑜𝑔𝑙𝑜𝑔𝑛
) operations.

The computation model used for designing our algorithm is the CREW PRAM. On this model in

one step any processor can read/write any memory cell. Concurrent read of one memory cell by multiple

processors in one step is allowed and concurrent write of one memory cell by multiple processors in

one step is prohibited. Parallel algorithms can be measured with their time complexity and the number

of processors used. They can also be measured with time complexity and operation complexity which

is the time processor product. The operation complexity (Tpp, with Tp time using p processors) of a

parallel algorithm is often compared with the time T1 of the best serial algorithm. In general TppT1.

When Tpp=T1 the parallel algorithm is said to be an operation optimal algorithm.

2 The Algorithm

Consider an algorithm for sorting n real numbers. Suppose each of the n/m lists with m real numbers

in each list have already been sorted, we are to merge these n/m lists into one sorted list. We will do k-

way merge in each pass to merge every k-lists into 1 sorted list and there are log(n/m)/logk passes to

have all n/m lists merged into 1 sorted list.

For simplicity, let us break down n elements into lists with m elements in each list. We can do

parallel sort on the individual list of m elements recursively. Now we pick every k-lists and have them

merged together.

The k-way merging of sorted lists L0, L1, …, Lk-1 is done as follows. For each sorted list of m real

numbers we pick every k2-th real number, i.e. we pick the 0th real number, the k2-th real number, the

2k2-th real number, the 3k2-th real number, and so on. Thus from each list Li we picked m/k2 real

numbers and these m/k2 real numbers form a sorted list Li’. and from these k lists we picked m/k real

numbers they form sorted lists L0’, L1’, .., Lk-1’. We merge L0’, L1’, ..,Lk-1’ into one sorted list L’ using

Valiant’s merging algorithm [13] (its improved version is given by Kruskal in [11] with time complexity

of O(loglogm) and linear operations for merging two sorted lists of m elements each) in logk passes

An NC Algorithm for Sorting Real Numbers in O(nlogn/
√

loglogn) Operations Y. Han et al.

94

and O(loglogm) time and O(m/k) operations in each pass. Thus the total time for merging L0’, L1’, ..,

Lk-1’ is O(logkloglogm) and the total operation is O(mlogk/k).

Now for each real number r in Li’ and for any Lj’, r knows the largest real number s in Lj’ that is

smaller than r and smallest real number l in Lj’ that is larger than r. s and l are actually neighbors in Lj’.

There are k2 elements between s and l in Lj. r then uses binary search in O(logk) time to find the largest

real number among these k2 real numbers that is smaller than r and the smallest real number that is

larger than r. That is, r finds the exact insertion point of r in Lj. Because there are k-lists and there are

m/k real numbers in L’ thus the time for this binary search is O(logk) and the operation is O(mlogk).

The operation for all lists is O(nlogk/k) because there are n/m lists and every k-lists are merged in the

k-way merge, we picked n/k2 real numbers and every one of them has to use k processors to check k-

lists in the k-way merging. Because r is arbitrary picked and thus we know that every real number in L’

knows its insertion point in every Lj. Let the real numbers in sorted order in L’ be r0, r1, …, rm/k-1. To

merge L0, L1, …, Lk-1 we need now to merge or sort all real numbers between the insertion points of ri

and ri+1 in L0, L1, …, Lk-1. There are no more than k2 real numbers in Lj between the insertion points of

ri and ri+1 and therefore the total number R(i, i+1) of real numbers (call them a block) in L0, L1, …, Lk-

1 between the insertion points of ri and ri+1 is no more than k3 (i.e. R(i, i+1)≤k3). When R(i, i+1) <k3 we

will combine multiple blocks together to reach k3 real numbers. We use the 𝑂(𝑛√𝑙𝑜𝑔𝑛) serial sorting

algorithm to sort them in 𝑂(𝑘3√𝑙𝑜𝑔𝑘) time. This represents 𝑂(𝑘3√𝑙𝑜𝑔𝑘) time and 𝑂(𝑛√𝑙𝑜𝑔𝑘)

operations in our parallel algorithm.

Thus the time for each stage is 𝑂(𝑘3√𝑙𝑜𝑔𝑘) and the operation for each stage is 𝑂(𝑛√𝑙𝑜𝑔𝑘). When

we start with m as a constant then there are logn/logk stages and therefore the time of our algorithm is

𝑂(
𝑘3𝑙𝑜𝑔𝑛

√𝑙𝑜𝑔𝑘
) and the operation is 𝑂(

𝑛𝑙𝑜𝑔𝑛

√𝑙𝑜𝑔𝑘
).

Pick k=logn, we get O(log1+n) time and 𝑂(
𝑛𝑙𝑜𝑔𝑛

√𝑙𝑜𝑔𝑙𝑜𝑔𝑛
) operations.

3 Procedure

Step 1: Lets say we have ‘m’ sorted elements in each list, and we have a total of ’n’ elements to sort.

This implies that we have ’n/m’ lists to sort. To sort these blocks, we will apply k-way merging.

‘m’

elements

‘m’

elements

‘m’

elements

’n'

elements

Figure 1

An NC Algorithm for Sorting Real Numbers in O(nlogn/
√

loglogn) Operations Y. Han et al.

95

Step 2: Each stage of k-way merging is to merge every k sorted lists into 1 sorted list. This is repeatedly

until all n/m lists are merged into one list.

Step 3: To merge k lists into 1 list, we need to pick the ‘0-th’, ‘k2-th’, ‘2k2-th’,‘3k2-th’,… real numbers

in each list Li to form a new list Li’ of m/k2 elements. This is shown as the figure below.

 a b c d e f g h i

Step 4: We merge L0’, L1’, .., Lk-1’ into one sorted list L’. The elements of this new formed list L’ then

use binary search to find their exact insertion point in L0, L1,….,Lk-1. These insertion points then

partition L0, L1, …, Lk-1 into m/k blocks with each block containing no more than k3 real numbers.

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

‘k’ lists ‘k’ lists ‘k’ lists …

….

Figure 2

i

‘m’

elements

‘m’

element

s

‘m’

element

s

 k2-th 2k2-th 3k2-th

 k2-th 2k2-th 3k2-th k2-th

2k2-th 3k2-th

‘m/k’element

s

Figure 3

i

An NC Algorithm for Sorting Real Numbers in O(nlogn/
√

loglogn) Operations Y. Han et al.

96

Step 5: When every one of these m/k blocks are sorted we effectively merged L0, L1, …, Lk-1 into one

sorted list L.

Main Theorem: n real numbers can be sorted in O(log1+n) time and 𝑂(
𝑛𝑙𝑜𝑔𝑛

√𝑙𝑜𝑔𝑙𝑜𝑔𝑛
) operations on the

CREW PRAM.

References

[1] A. Ajtai, J. Komlós, E. Szemerédi. 1983. An O(nlogn) sorting network. Proc. 1983 ACM Symp.

On Theory of Computing (STOC’83), 1-9.

[2] P. C. P Bhatt, K. Diks, T. Hagerup, V. C. Prasad, T. Radzik, S. Saxena.1991. Improved deterministic

parallel integer sorting. Information and Computation, 94, 1, 29-47.

[3] R. Cole. 1988. Parallel merge sort. SIAM J. Comput., Vol. 17, No. 4, 770-785(1988). Correction:

Parallel merge sort. SIAM J. Comput., 22(6), 1349(1993).

[4] T. H. Corman, C. E. Leiserson, R. L. Rivest, C. Stein. 2009. Introductionto Algorithms. Third

Edition, The MIT Press.

[5] T. Hagerup. 1987. Towards optimal parallel bucket sorting. Information and Computation, 73, 39-

51.

[6] Y. Han. 2017. Sort real numbers in 𝑂(𝑛√𝑙𝑜𝑔𝑛) time and linear space. In arXiv.org with paper id

1801.00776

[7] Y. Han. 2004. Deterministic sorting in O(nloglogn) time and linear space. Journal of Algorithms,

50, 96-105.

[8] Y. Han. 2015. A linear time algorithm for ordered partition. Proc. 2015 International Frontiers in

Algorithmics Workshop (FAW'15), LNCS 9130, 89-103.

[9] Y. Han, X. Shen. 1995. Conservative algorithms for parallel and sequential integer sorting. Proc.

1995 International Computing and Combinatorics Conference, Lecture Notes in Computer Science 959,

324-333.

An NC Algorithm for Sorting Real Numbers in O(nlogn/
√

loglogn) Operations Y. Han et al.

97

[10] Y. Han, X. Shen. 2002. Parallel integer sorting is more efficient than parallel comparison sorting

on exclusive write PRAMs. Proc. 1999 Tenth Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA'99), Baltimore, Maryland, 419-428(January 1999). Also in SIAM J. Comput.31, 6, 1852-1878.

[11] C. P. Kruskal. 1983. Searching, merging, and sorting in parallel computation. IEEE Trans.

Comput., C-32, 942-946.

[12] S. Saxena, P. Chandra, P. Bhatt, V. C. Prasad, 1994. On parallel prefix computation. Parallel

Processing Letters 4, 429-436.

[13] L. G. Valiant. 1975. Parallelism in comparison problems. SIAM J. Comput., 4, 348-355.

An NC Algorithm for Sorting Real Numbers in O(nlogn/
√

loglogn) Operations Y. Han et al.

98

