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Abstract

Wavelet pooling methods can improve the classification accuracy of Convolutional Neu-
ral Networks (CNNs). Combining wavelet pooling with the Nesterov-accelerated Adam
(NAdam) gradient calculation method can improve both the accuracy of the CNN. We
have implemented wavelet pooling with NAdam in this work using both a Haar wavelet
(WavPool-NH) and a Shannon wavelet (WavPool-NS). The WavPool-NH and WavPool-
NS methods are most accurate of the methods we considered for the MNIST and LIDC-
IDRI lung tumor data-sets. The WavPool-NH and WavPool-NS implementations have
an accuracy of 95.92% and 95.52%, respectively, on the LIDC-IDRI data-set. This is an
improvement from the 92.93% accuracy obtained on this data-set with the max pooling
method. The WavPool methods also avoid overfitting which is a concern with max pool-
ing. We also found WavPool performed fairly well on the CIFAR-10 data-set, however,
overfitting was an issue with all the methods we considered. Wavelet pooling, especially
when combined with an adaptive gradient and wavelets chosen specifically for the data,
has the potential to outperform current methods.

1 Introduction

Convolutional Neural Networks (CNN) have advanced image classification, object detection,
and other image analysis applications. Wavelet pooling has the potential to improve the results
of CNNs for some applications. Wavelets have been incorporated into CNNs to improve results
before this work [5]. They are often used to do texture classification [9] or evaluate audio signals
by adding wavelet analysis techniques as a part of the deep learning process [4]. They’ve also
been used to improve image segmentation using CNNs [8]. Recently, it has been proposed
that wavelet analysis can be used to improve CNNs by using wavelet analysis as a pooling
method [27]. We have combined this recently proposed technique of wavelet pooling with
the Nesterov-accelerated Adam (NAdam) [7] gradient descent method in order to improve
classification. NAdam incorporates the Nesterov momentum [18] into the Adaptive moment
estimation(Adam) stochastic optimization method [11, 7] for gradient descent. This provides
us with an efficient and quick converging method for gradient descent. We apply this method to
both lung cancer data, which is a real and critical application, as well as some of the commonly
used testing data sets to show how combining these methods leads to improved classification.
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Figure 1: Example images from the (a) the LODC-IDRI lung tumor, (b) MNIST, (c)
CIFARI10 [13] datasets.

We have chosen to also work with the LIDC-IDRI lung tumor data-set [2, 3]. Lung cancer is
a leading cause of cancer death in the United States with over 150,000 deaths per year [23]. In
fact, 19% of all cancer deaths worldwide are caused by lung cancer, with over 1.6 million deaths
per year [25]. This is a pressing problem, one that deep learning is well equipped to help solve.
This is because early detection and proper treatment is an essential part of effectively treating
lung cancers [17]. However, lung cancer diagnoses have a false positive rate of over 96% [6, 10].
Lung cancer can also be diagnosed too late, as some cases are asymptomatic for long periods
of time, sometimes even into late stages of cancer. One way to try to address this problem is
by developing CNN techniques to improve the accuracy and decrease the false positive rates of
identification. The method we cover here is a first step in a larger scheme to find and identify
lung tumors. In this work, we apply wavelet pooling to improve the classification of patient
scans as cancer being present or not using several different wavelet pooling techniques.

2 Methods

The discussion of the methods used can be separated into four subsections: (a) Datasets, (b)
Wavelet Pooling, (¢) NAdam, and (d) Architectures of the CNNs. We have implemented all
the CNNs, the WavPool methods, and NAdam in MATLAB 2016b [16] using the MatConvNet

package [26].

2.1 Datasets

We use the LIDC-IDRI lung tumor dataset [2, 3] in this work. This dataset consists of the
Computed Tomography (CT) scans and annotations of 1,018 patients. Figure 1(a) shows some
sample images from the dataset. We use a 70% training and 30% testing rate with the lung
tumor data.

The LIDC-IDRI lung tumor dataset is annotated to note nodule size and location for each
patient. These annotations were created in two phases. The first phase was a ”blind-read”
phase by four radiologists. Each radiologist reviewed and noted any nodules they found in the
CT scans, both cancerous and benign, classifying each nodule by size. The second phase had
each radiologist review the work of the other three and either confirm or correct the annotations.
This way as many nodules were identified as accurately as possible. This two phase annotation
method tries to overcome any issues of false positives, false negatives, or missed modules. We
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simplify the classification task in this work by looking at only whether or not cancerous nodules
were identified in a scan.

In order to analyze our methodology, we also use two standard datasets for testing:
MNIST [14] and CIFAR-10 [13, 12]. MNIST is a set of 70,000 images of handwritten dig-
its (0 through 9). Figure 1(b) shows some example images from this dataset. The training set
uses 60, 000 of images and the rest for testing. CIFAR-10 is a set of 60,000 color images. Each
of the images falls into one of 10 different object classes, all of which are the same size. Fig-
ure 1(c) shows some example images from this dataset. For this dataset, 50,000 of the images
are used for testing and the rest for training. MNIST and CIFAR-10 are useful for this work
since they are standards by which we can compare our methods with others in a meaningful
way.

2.2  Wavelet Pooling

Wavelet pooling [27] uses wavelets as a method of reducing feature map dimensions during
the pooling step. This differs from traditional pooling methods since it does not use a neigh-
borhood sub-sampling method to reduce the dimensions of the feature maps. Neighborhood
reduction [19] produces artifacts which wavelet pooling is specifically designed to reduce by dis-
carding first-order sub-bands. This lessens the number of jagged edges and other artifacts that
cause problems during image classification tasks and helps to better capture data compression.

The implementation of wavelet pooling we use in our work, which we will refer to as WavPool,
has been implemented with both the Haar and Shannon wavelets. The baseline implementation
uses a 2D Haar wavelet and Stochastic Gradient Descent (SGD) method. We have added the
Shannon wavelet as well as implementing the SGD method here. Our two improved methods use
the NAdam gradient descent methods with the two wavelets: WavPool-NH and WavPool-NS.
The implementation of the wavelet pooling using the Haar wavelet with NAdam is denoted as
WavPool-NH. WavPool-NS is the implementation of wavelet pooling using a Shannon wavelet
with NAdam.

In order to use these wavelets for pooling, we need to define our forward and backward prop-
agation methods using the wavelets. Forward propagation uses a second order decomposition
in the wavelet domain of the 2D discrete wavelet transform (DWT) [22] while back propagation
is achieved by reversing the forward propagation process. It should also be noted that after
first order wavelet decomposition, the detail coefficient sub-bands are up-sampled by a factor
of 2. The 2D DWT functions used for forward propagation are defined as follows:
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where Wy and W, are the wavelet and scaling coefficients, ¥ is the wavelet function and ¢
is the scaling function, f(m,n) is the image feature at position m,n, k and [ are the wavelet
position, M and N are the feature dimensions, and H, V', and D are the horizontal, vertical,
and diagonal scaling coefficients.

The image reconstruction of the second order wavelet sub-bands for the back propagation
uses the inverse DWT function. The feature undergoes a first order wavelet decomposition.
The detail coefficient sub-bands are then up-sampled by a factor of 2 to create the first level
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decomposition which then becomes the second level decomposition. The second order decom-
position is used to reconstruct the image feature in order to continue the back propagation.
Again, note that this is the reverse of the forward propagation process. The 2D IDWT used
for back propagation is defined as:

f(m,m) = ﬁ S5 Wy Gios i D) Wi e (m, m)+

1 inf 4 4
—— Wg(dos by 1)@ 1 (myn), j = jo = 2

We have used the Haar wavelet, the simplest of the wavelets, here for two reasons: (1)
because it is simple and computationally cheap, and (2) because it was used in the original
wavelet pooling work. Using the same wavelet gives us a better understanding of how the
addition of the NAdam algorithm for the gradient descent affects the CNNs. We also use the
Shannon wavelet because it can be either discrete or complex and continuous. It is still simple
wavelet but it has many real-world applications [1]. We have the wavelet pooling method
with both the Haar wavelet and the Shannon wavelet in the MatConvNet package. The Haar
wavelet is simple to implement, however, the Shannon wavelet is slightly more difficult. Both
of the wavelet methods were tested outside the CNN to ensure proper implementation before
integration into the CNN architectures.

The Haar wavelet is defined by a wavelet function [24], ¥(¢), and a scaling function, ¢(t).
These are defined as follows:

A IN
IA N
— N

t
t

0 otherwise

1 0<t<1
0 otherwise

The Shannon wavelet is also defined by a wavelet function [15], ¥(¢), and a scaling function,
¢(t). These are defined as follows:

W(Sha) (1) = 2sine(2t — 1) — sine(t)
where sinc(t) = sin(nt)/wt.
sin(mt)

oI () = —

= sinc(t)

2.3 NAdam

The Adam algorithm [11] uses a combination of classical momentum and adaptive learning rates
for improved gradient calculations. Nesterov’s accelerated gradient (NAG) [18] is a momentum
calculation that speeds up the process of the gradient calculation. NAG can also be used as
the momentum calculation method in the Adam algorithm. NAdam, as proposed by Dozet [7],
improves upon Adam by using NAG instead of SGD for momentum. This speeds up the
calculation and can help to improve gradient calculation results. It also has the added advantage
of giving us better bounds than stochastic gradient descent for convex, non-stochastic objectives.
We use it here since NAdam outperforms other algorithms in reducing training and validation
loss. It achieves good results even without tuning. We have implemented the method as a solver
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option in the MatConvNet package since the integration of different solvers has been simplified
to give users better options for customizing their application.

2.4 Architecture of the CNNs

We use three separate CNN architectures for each of the datasets used to test the wavelet pooling
with NAdam methodology. The basic architecture is the same for all the implementations of
each of the applications. The implementations we have chosen for MNIST and CIFAR-10 are the
same as those used in the previous wavelet paper [27] to provide the best comparison possible.
These architectures are similar to the examples provided in with the MatConvNet package [26].
The architecture used for the lung tumor data is based on our previous work[20, 21].

The major differences are in the pooling and gradient descent methods used. We test all the
possible combinations of WavPool and the two gradient descent methods, SGD and NAdam, in
order to better understand how the changes we make in the implementation affect our results.
The variations applied to each of our CNN implementations are as follows: (1) CNN using Max
Pooling: max pooling with SGD, (2) CNN using WavPool-H: wavelet pooling using the Haar
wavelet with SGD. (3) CNN using WavPool-S: wavelet pooling using the Shannon wavelet with
SGD, (4) CNN using WavPool-NH: wavelet pooling using the Haar wavelet with NAdam, and
(5)CNN using WavPool-NS: wavelet pooling using the Shannon wavelet with NAdam.

It is important to note that the maximum epochs are set for 20 epochs for MNIST while
CIFAR-10 and LIDC-IDRI each use a maximum of 50 epochs. MNIST has a lower maximum
epoch setting because it is easy to overfit with this dataset.
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Figure 2: Architectures of the CNN for Lung Tumor classification with WavPool.

We developed a basic architecture in our previous work [21, 20] which classified lung CT
scans as having cancer present. We have improved the accuracy by incorporating WavPool
into our methodology. It is also important to note in this architecture that the sequence of a
10 x 10 convolutional layer, a ReLU layer, the wavelet pooling layer, and a 10% dropout layer
are repeated twice. We also repeat the sequence of 5 x 5 convolutional layer followed by a ReLU
layer. While not overly complex, we have found this architecture does well as a simple classifier
for whether each scan contains tumors or not.

3 Results and Discussion
The CNNs were implemented in MATLAB [16] using the MatConvNet package [26]. This pack-

age is easily extendable and allowed us to implement the wavelet pooling, NAdam gradient, and
both the Haar and Shannon wavelets. Two Nvidia GeForce GTX 970 GPUs with 16GB of video
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RAM were used for training and testing the CNNs. We compare the results of these imple-
mentations in the following sections the results of using max pooling, WavPool-H, WavPool-S,
WavPool-NH, and WavPool-NS.

3.1 MNIST

Energy Performance on MNIST Dataset

—+ MaxPool
—+ WavPool-H
—+ WavPool-S
—+ WavPool-NH
—+ WavPool-NS

-
E S il
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Figure 3: MNIST implementation energy performances.

Table 1: Comparison of Max Pooling, WavPool-H, WavPool-S, WavPool-NH, and WavPool-NS
on MNIST dataset

MNIST Dataset

Method Accuracy Time
Max Pooling 98.35%  699.81s
WavPool-H 97.35% 654.82s
WavPool-S 98.29% 673.23s
WavPool-NH 99.98% 537.82s
WavPool-NS 99.99% 599.71s

Table 1 shows the accuracy and time measures for the CNN with max pooling, WavPool-H,
WavPool-S, WavPool-NH, and WavPool-NS. We can see that for this dataset the WavPool-NH
and the WavPool-NS give us very similar results. WavPool-H and WavPool-S also give similar
results. In fact, we find it interesting to note that WavPool-H and WavPool-S are extremely
close in energy performance. All methods do fairly well in classifying this dataset. We can see
from Figure 3 the max pooling overfits the data. We also see that all four implementations of
the wavelet pooling have fairly smooth energy performances for the MNIST data. WavPool-NH
and WavPool-NS have very similar results with this dataset with their energy performances
and accuracy being very close. WavPool-NH is also the fastest of the classifiers. This is not
unexpected with this dataset as this dataset does well with many types of pooling methods.

3.2 CIFAR-10

Table 2 shows the accuracy and time measures for the CNN with max pooling, WavPool-H,
WavPool-S, WavPool-NH, WavPool-NS. We see from this table that all of the implementations
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Figure 4: CIFAR-10 energy performance for (a) Max Pooling, (b) WavPool-H, (¢) WavPool-S,
(d) WavPool-NH, (e¢) WavPool-NS.

Table 2: Comparison of Max Pooling, WavPool-H, WavPool-S, WavPool-NH, and WavPool-NS
on CIFAR-10 dataset

CIFAR-10 Dataset
Method Accuracy Time
Max Pooling 76.08%  916.76s
WavPool-H 81.01% 1023.81s
WavPool-S 79.10% 1018.32s
WavPool-NH 80.59%  940.57s
WavPool-NS 85.68%  944.72s

have similar accuracies. However, Figure 4(a) shows that the max pooling overfits quickly with
this dataset, though it is the fastest. Overfitting is also a problem with the wavelet pooling
implementations as we can observe in Figures 4(b), (c), (d), and (e). This is not surprising as
previous work [27] also found that overfitting was a problem when applying wavelet pooling to
the CIFAR-10 dataset. We can see the advantage of using the more complex wavelet since here
the Shannon wavelet improves the results and lessens overfitting.

3.3 LIDC-IDRI

Figure 5 shows the energy performance and error rates of the networks. We can see that we
get relatively good performance from all of these methods. Overfitting is also not a problem
with the WavPool implementations in this application, as we can see in 5 (b), (c), (d), and (e).

The accuracy of the max pooling, WavPool-H, WavPool-S, WavPool-NH, and WavPool-NS
for the LIDC-IDRI dataset are shown in Table 3. The classification here is a simple binary
one: cancerous tumors are either present (a positive case) or they are not (a negative case).
Simplification of this problem is a useful first step for working with this data because of the
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Figure 5: LIDC-IDRI energy performance for (a) Max Pooling, (b) WavPool-H, (¢) WavPool-S,
(d) WavPool-NH, (¢) WavPool-NS.

Table 3: Comparison of Max Pooling, WavPool-H, WavPool-S, WavPool-NH, and WavPool-NS
on LIDC-IDRI Lung Tumor dataset

LIDC-IDRI Dataset
Method Accuracy Time
Max pooling 92.93% 56773.20s
WavPool-H 94.84%  59987.71s
WavPool-S 94.51% 60193.34s
WavPool-NH 95.92% 68371.22s
WavPool-NS 95.52%  69214.49s

difficult nature of identification and classification of tumors. Complex classification and location
identification, such as RCNNs, require accurate CNNs as their base. Thus, improved accuracy,
even in extremely simplified cases, is important.

We can see that the WavPool-NS implementation has the highest accuracy for this dataset.
The wavelet pooling methods work well with this application, which we expected. One interest-
ing thing to note is that all three implementations of the wavelet pooling are within 2% of each
other in accuracy. Even though max pooling is the fastest implementation we consider here,
the increase in accuracy is worth the extra time cost in using the WavPool implementations.
Further, the slowest implementation, the WavPool-NS, is only 21.91% slower than the max
pooling implementation. Since this cost is up front in the training phase, we consider it to be
a reasonable trade-off for the improved accuracy. We also note that we do expect WavPool-NS
to be slightly slower than WavPool-NH since the Shannon wavelet is computationally more
expensive. We believe that the large time difference is due to the full implementation not being
fully optimized.

More complex classification problems with this dataset, such as using a Regions with Con-
volutional Neural Network(RCNN) that gives both the location and type of tumor, could be
improved by using the WavPool implementations. Continuous wavelets, even a continuous
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Shannon wavelet, may also be a good implementation here, although it will be even more com-
putationally expensive. For the more simple task of classifying patient scans as either having
tumors present or not, the WavPool implementations outperform the max pooling. The in-
crease in accuracy is not overly large but, because of the importance of the application, we
think this is enough to justify the minor increased cost in time.

4 Conclusion

We have improved the accuracy of the WavPool method in this work. We have also worked
on increasing the speed of the methodology using the NAdam gradient technique. Also, since
NAdam can improve on the results of gradient descent without intensive tuning, it is beneficial
to combine this method with WawvPool to help improve the overall process of the classification.

We considered both the Haar wavelet and the Shannon wavelet to compare how changing
the wavelet method impacts the results. We have found that for the lung tumor classifica-
tion, we were able to achieve a small improvement by using the Shannon wavelet rather than
the Haar wavelet. The WavPool-NS method performed the best with the LIDC-IDRI dataset
with a 95.52% accuracy. However, there was also a trade-off in time by changing the wavelet
method. Further research needs to be done to determine the best wavelet for the lung tu-
mor detection application. It also needs to be determined whether the wavelet pooling gives a
significant enough improvement to justify the increased computational cost and if further opti-
mization methods can improve to overall time. WavPool methods show promise in addressing
the problem of lung tumor classification and the technique may help improve the results for
other applications. It is important to note that improving pooling methods alone is not enough
to make major improvements to most applications. WavPool and similar methods need to be
used in conjunction with other techniques to create better CNN pipelines.

Lung cancer deaths are a serious problem worldwide. Early detection methods with good
accuracy rates are needed to help increase the patient survival rate. Works such as ours con-
tributes to the advancement of techniques which leads towards a truly efficient and useful early
detection system.

Future work needs to focus on more complex classification that include both tumor type
and location identification. This can be done by incorporating this work into Regions with
Convolutional Neural Networks (RCNNs). This method can also be improved by testing further,
more complex wavelets for the wavelet pooling.
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