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Abstract 
With the rapid growth of the economy, the problem of plastic litter in rivers is 

becoming increasingly severe, particularly in key river basins such as the Taihu Basin. 
Plastic litter not only disrupts aquatic ecosystems but also poses a threat to human 
health and regional economic development. Therefore, it is imperative to take effective 
measures to reduce plastic litter in rivers in order to protect the environment and 
promote sustainable development. This study proposes an efficient river plastic litter 
detection method by combining unmanned equipment and deep learning. A dataset 
comprising 1,347 RGB images of river litter, captured under diverse environmental 
conditions, was developed to offer a wealth of diversity for model training. YOLOv10-
N is employed for object detection and an mAP@0.5 of 94.4% on the dataset is 
achieved. The research results highlight the potential of applying deep learning in 
environmental monitoring. In addition, the contribution of this study's dataset provides 
valuable resources for future model training, with diverse types of images enhancing 
the model's generalization capabilities and offering possibilities for more effective litter 
collection. 
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1 Introduction 
As the economy continues to develop and grow rapidly, environmental issues have become 

increasingly prominent and are now a widespread concern globally. According to a World Bank 
report (Kaza et al., 2018), it is estimated that by 2050, 3.4 billion tons of waste will be generated per 
year, significantly impacting the natural environment. Plastic pollution has emerged as a significant 
concern for both public health and environmental sustainability. In particular, the presence of plastics 
in aquatic ecosystems has garnered considerable attention due to the economic losses and 
environmental risks it poses, as well as its potential effects on human health (González-Fernández et 
al., 2021; Van Calcar & Van Emmerik, 2020). The United Nations Environment Programme (UNEP) 
reports that marine debris is distributed as follows: 15% is found floating on the ocean surface, 15% is 
suspended within the water column, and 70% settles on the seabed (Jambeck et al., 2015). Rivers are 
identified as the primary contributors to marine plastic litter, with annual estimates of plastic 
discharged from rivers to the ocean ranging from 0.8 to 2.7 million tons (Meijer et al., 2021). Despite 
their vital role in the transport and accumulation of marine debris, research on river ecosystems 
remains limited (Jia et al., 2023). As litter in lakes, rivers, and oceans continues to rise, removing 
debris from the water's surface has become a crucial effort to enhance the ecological environment 
(Compa et al., 2019). The water quality of rivers can be partially assessed through the types and 
quantities of floating debris in the waterways, serving as a useful indicator for measuring water 
quality (Lin et al., 2021). However, conventional manual cleaning methods are often costly and 
inefficient. With advancements in unmanned equipment technology, utilizing such equipment to assist 
or even replace manual water purification has emerged as a viable solution (Kamarudin et al., 2021). 

In recent years, convolutional neural networks (CNNs) have established themselves as the leading 
techniques in computer vision, largely owing to their remarkable accuracy and highly automated 
feature extraction capabilities (Ham et al., 2018; Dhillon and Verma, 2020; Esteva et al., 2021). In 
terms of object detection, YOLO accounts for more than 34% of the models used for object detection, 
followed by Faster R-CNN with 25% (Wu et al., 2023). Maharjan et al. (2022) found that the pre-
trained YOLOv5s model was most useful for unclassified plastic detection in rivers from drone 
images. Van Lieshout et al. (2020) employed a visual method to estimate the flux of large plastic 
debris in rivers, identifying plastics within the dataset without categorizing them, with an accuracy of 
68.7%. However, the application of these advanced techniques is limited by the lack of targeted and 
high-quality datasets, making model training and performance optimization challenging. In view of 
this, the objective of the study is to improve the performance of different types of river litter detection 
by developing a comprehensive self-made dataset combined with the latest deep learning techniques. 
This dataset not only covers multiple types of river litter, but also takes into account different 
environmental conditions and litter states, providing a rich and accurate data basis for model training.  

The main contributions of this study include: 

• Using RGB images of floating plastic litter in rivers acquired by drones and other 
equipment, a comprehensive multi-category dataset containing 1,347 images was 
developed (Zhang et al., 2024),and an object detection model, YOLOv10-N, was applied 
to achieve 94.4% mAP@0.5 on this dataset. 
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2 Method 

2.1 Obeject Detection Algorithm  
This study introduces a method for detecting riverine debris through the analysis of Unmanned 

Aerial Vehicle (UAV) imagery. The approach employs the YOLOv10 algorithm to facilitate the 
automatic identification and classification of self-classified plastic waste within river environments. 
The research workflow is shown in Figure 1. Five types of plastic litter are collected in the campus 
litter station, including plastic bottles, plastic bags, cans, plastic boxes, and plastic cups. The images 
are taken in the river using drones and other equipment, and the obtained images are classified and 
annotated. Then use the YOLOv10 algorithm as the base model. YOLOv10 achieves training and 
inference without non-maximum suppression (NMS) through consistent dual allocation, which 
significantly reduces inference latency and improves prediction efficiency (Wang et al., 2024). In 
addition, YOLOv10 also adopts an overall efficiency-accuracy driven model design strategy to 
optimize the various components of the model architecture to minimize computational overhead while 
improving performance (Sapkota et al., 2024). In term of performance, YOLOv10 outperforms 
previous versions and other state-of-the-art models on the COCO dataset (Wang et al., 2024). After 
the model training is completed, the prediction accuracy of the model is measured by calculating 
Intersection over Union (IoU) and mean Average Precision (mAP). This enables the model to predict 
the litter in the river and output the category and bounding box of each detected object. In this way, 
the method effectively detect and classify litter in the river, providing an efficient technical support 
for river litter management and environmental protection. 

 

2.2 Data Collection 
As shown in Figure 2, data are collected from a representative water town in Suzhou, China. 

Aerial photography is performed using a DJI Phantom 4, which is equipped with a camera capable of 
4K resolution. The drone is operated at a low altitude, ranging from 5 to 10 meters, to capture high-
definition imagery. The camera is manually controlled and records images in the RGB spectrum 
during the daylight hours from 10:00 am to 5:00 pm. The native resolution of each photograph is an 
impressive 5472×3648 pixels. To evaluate the extent of plastic litter in the rivers, photographic 
surveys are also carried out at a closer altitude of 2 to 4 meters above the water's surface using an 
iPhone 13. Due to the insufficient number of images of floating plastic collected in field data. A 
variety of materials are utilized in creating a customized dataset for documenting riverine plastic 
waste. The materials include: (i) Fishing lines of two different diameters, 0.165 mm and 0.8 mm, 
which are employed to confine plastic debris within specific areas. (ii) Single-sided adhesive tape is 

Figure 1: The research workflow for detecting plastic litters using the YOLO v10 
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used to secure the fishing line's other end to a hand or a vertical marker, thereby simplifying the 
manipulation of the waste. (iii) A variety of plastic items, including bottles, bags, cans, boxes, and 
cups, are included in the dataset. These items vary in size and color to represent the range of plastic 
litter found in the river. Specifically, the dataset encompasses various types of floating debris, 
ensuring a high level of diversity and representativeness among the samples. This diversity not only 
reflects the different types of waste present under various environmental conditions but also increases 
the variability during the model training process. As a result, the model's ability to generalize in 
complex scenarios is enhanced, thereby effectively improving detection precision and accuracy. 
Furthermore, the comprehensiveness of the dataset impacts the model's performance in real-world 
applications, as a rich and diverse dataset can better capture the various features and situations 
encountered in reality. Consequently, this comprehensiveness enhances the model's performance and 
further validates the reliability and effectiveness of the research findings, providing a solid foundation 
for future applications. 

 

2.3 Labeling 
Tzutalin is credited with the development of LabelImg, a software tool that was made publicly 

available in 2018 (Tabassum et al. 2020). When integrated with the YOLO (You Only Look Once) 
object detection algorithm, LabelImg forms a formidable duo for the creation and training of high-
performance object detection models, as highlighted by Varnima & Ramachandran (2020). LabelImg 
is emerged as a prevalent choice for image annotation in the field of object detection, as noted by 
Pande et al. (2022). The repository for LabelImg, which includes its source code and additional 
documentation, is hosted on GitHub (HumanSignal n.d.). As depicted in Figure 3, within the 
customized dataset crafted for river plastic litter, each item is assigned a distinct descriptor. The 
precise spatial orientation of each object within the photographic frame is delineated through an 
annotation file that specifies the object's coordinates and associated labels. This methodical annotation 
is crucial for the accurate training and evaluation of object detection models. 

Figure 2: Location of study sites (Background map: OpenStreetMap, 2024) 
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3 Results 

3.1 Experimental Environment and Evaluation Metrics 
The data processing and analysis for this project were completed on a HP 8A17 (LPC Controller - 

5172) motherboard system equipped with an Intel 12th-generation Core i7-12700H 14-core processor, 
16GB of memory (4800MHz), a 1TB Western Digital WD PC SN810 SDCPNRY-1T00-1006 solid-
state drive, and an NVIDIA GeForce RTX 3070 Ti Laptop GPU (8192 MB video memory). The 
operating environment is Windows 11 Home Edition (64-bit). The computational framework 
encompasses PyTorch version 2.1.1, Python version 3.9, and CUDA version 11.8. For the sake of 
maintaining uniformity and enabling the direct comparison of outcomes across different experiments, 
software milieu adhere to the specifications detailed in Table 1 for all subsequent trials. 

 
Parameter Value Parameter Value 

Learning Rate 0.01 Weight Decay  0.0005 
Batch Size 16 Momentum 0.937 
Image Size 416x416 Epoch 200 

Workers 8 Optimizer Auto 
 
Table 1: Training settings 

 
In the domain of object detection, Intersection over Union (IoU) serves as a pivotal metric for 

assessing the accuracy of the detection model. IoU quantifies the extent to which the predicted 
bounding box aligns with the ground truth bounding box. The IoU is computed, as delineated in 
Equation (1), by taking the ratio of the area where the predicted box and the actual box overlap to the 
total area covered by both boxes combined (Maharjan et al., 2022). This calculation provides a 
measure of the model's precision in detecting objects within an image. 

Figure 3: Image labeling steps for plastic bottles using LabelImg 
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                                                                                                  (1) 
 
The mean Average Precision (mAP), as described by Equation (2), is a critical metric for assessing 

the overall effectiveness of an object detection model. This metric calculates the average precision 
across various confidence thresholds, offering a holistic view of the model's performance 
(Jackovljevic et al., 2020). Furthermore, the model's performance is also gauged by two fundamental 
metrics: Precision, as defined by Equation (3), and Recall, outlined in Equation (4). The evaluation 
index is based on four key statistics: True Negative (TN), True Positive (TP), False Positive (FP) and 
False Negative (FN). These metrics are essential for understanding the model's ability to accurately 
identify objects without producing excessive false positives or missing true positives.  
 

 

                                                                                                   (2) 
 

                                                                                                     (3) 
 

                                                                                                          (4) 

3.2 Experimental Results 
The experimental results presented in Table 2 demonstrate the remarkable detection performance 

of YOLOv10-N in identifying various types of riverine debris. For instance, plastic bottles and 
aluminum cans exhibit high precision and recall rates above 89%, suggesting that YOLOv10 is highly 
reliable in detecting these items. Notably, plastic boxes boast a near-perfect precision of 98%, with a 
commendable recall rate of 93.8%, indicating exceptional detection capabilities. As shown in figure 
4a, the mAP at IoU thresholds of 0.5 and 0.5:0.95 further underscores the model's robustness, with 
mAP values exceeding 94.4% for all classes. This indicates that YOLOv10 not only detects debris 
with high accuracy but also does so consistently across different IoU thresholds. 

 

 
 

Figure 4: (a) Performance Evaluation of Object Detection Models 

 (b) Confusion Matrix Normalized for plastic litter Classification 
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Class P /% R /% CMN/% mAP @0.5/% 

Plastic bottle 89.9 85.1 91 87.3 
Plastic bag 90.9 89.5 95 96.1 
Plastic box 98 93.8 94 98.1 
Plastic cup 93.7 89.2 94 95.7 

Aluminum can 89.4 93.4 97 94.5 
all 92.4 90.2 94.2 94.4 

 
Table 2: Experimental results 

For Confusion Matrix Normalized (CMN), the diagonal elements are as close to 1 as possible, and 
the off-diagonal elements are as close to 0 as possible. Such a matrix indicates that the model's 
predictions on all categories are very accurate, that is, the model has high precision and high recall. 
As shown in Figure 5, the classification of Aluminum cans performed best with an accuracy of 97%, 
which shows that the model is very effective in identifying cans. The model's performance on most 
categories is satisfactory, but there is room for improvement in distinguishing plastic bottles. The 
accuracy and robustness of the model can be further improved by increasing the training data, 
optimizing feature extraction, or adjusting the model parameters. 

The performance of the YOLOv10-N model was evaluated in the task of identifying river litter in 
complex scenarios. As shown in Figure 4b, when high intersection-over-union (IOU) conditions and 
target confidence thresholds (not less than 0.6) are set, YOLOv10-N demonstrates its excellent 
processing capabilities, especially in the case of target overlap and occlusion. Encouragingly, the 
YOLOv10-N model has demonstrated the capability to accurately detect plastic bottles in imagery 
captured within natural river settings, including areas with dense vegetation. The model exhibits a 
confidence threshold for object detection that averages approximately 66%.In addition, when the 
image contains multiple categories of litter and presents various morphological changes, YOLOv10-N 
can still effectively detect targets, showing its excellent adaptability. 
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Figure 5: The datasets image samples about successful prediction of YOLOv10-N 
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4 Discussion 

4.1 Analysis of Datasets 
This research endeavors to create a specialized classification dataset specifically tailored for the 

identification of riverine plastic waste, a pressing environmental issue that necessitates effective 
monitoring and management strategies. Recognizing the urgency of addressing plastic litter in aquatic 
ecosystems, the dataset has been validated within the YOLOv10-N object detection algorithm, 
achieving both the high efficiency and precision of waste recognition processes. The dataset’s quality 
and diversity are paramount, providing the algorithm with robust training and validation information 
essential for its performance. The dataset encompasses a wide variety of floating plastic waste 
typically found in riverine environments, including items such as plastic bottles, plastic bags, plastic 
boxes, plastic cups, and aluminum cans. Each category is represented with multiple examples, 
reflecting the real-world conditions where these items are often encountered. During the prediction 
phase, although the overall performance of the model was satisfactory, some aluminum cans were 
misidentified or missed due to their similarity to the background, indicating that the algorithm still 
needs to be further optimized in distinguishing objects similar to the background. Notably, the dataset 
includes various shapes of crushed cans and a range of forms for plastic boxes and cups, such as open 
cups and specialized containers like milk tea cups. This attention to detail in capturing different 
variations of plastic waste contributes to the dataset's representativeness and practicality, allowing for 
more accurate modeling of the complexities associated with plastic waste in aquatic settings. The 
diversity embedded within the dataset not only enhances its robustness but also ensures the model's 
wide applicability in real-world scenarios. By training the YOLOv10-N algorithm on a 
comprehensive set of plastic waste examples, the model is better equipped to handle the multifaceted 
challenges posed by varied environmental conditions. The scale and quality of the dataset play a 
crucial role in the effective training of deep learning models, as highlighted by Xiao et al. (2021), 
emphasizing the importance of high-quality inputs in achieving reliable outputs. 

4.2 Limitation and future work 
The research conducted in this study reveals several limitations that warrant further discussion and 

exploration. A primary challenge has been the difficulty in gathering comprehensive data from 
riverbanks that are densely populated with vegetation. This limitation has led to a focused study on a 
single river channel, which may restrict the broader applicability of the findings. To enhance the 
generalizability of this research, future studies should consider expanding data collection to include a 
variety of river environments. Such diversity in the study locations would allow researchers to draw 
more robust conclusions that can be applied to different ecological contexts. Additionally, the current 
focus has predominantly been on floating objects within the river channel. However, it is crucial to 
expand this focus to include aquatic plants, such as cyanobacteria and water hyacinth, which play 
significant roles in the river ecosystem. These organisms not only contribute to the ecological balance 
but also influence water quality and habitat dynamics. By incorporating the monitoring of these 
aquatic plants, future research can provide a more comprehensive understanding of the river's health 
and the factors affecting its biodiversity.  

Moreover, the limitations associated with drone flight capabilities and monitoring in densely 
vegetated environments suggest the need for innovative technological solutions. Future studies should 
explore the integration of mast mounted cameras  with drones to enhance data collection efficiency 
and coverage. Mast mounted cameras can operate effectively in shallow water areas along riverbanks, 
enabling researchers to access regions that drones alone might not effectively survey. Conversely, 
drones can cover a broader area from the air, providing valuable aerial perspectives and data. The 
collaborative operation of mast mounted cameras and drones presents an exciting opportunity for 
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comprehensive monitoring of river environments. By leveraging the strengths of both technologies, 
researchers can achieve a more thorough and nuanced understanding of river ecosystems. This 
combined approach could facilitate the collection of a diverse array of data points, including water 
quality metrics, vegetation mapping, and assessments of aquatic species distribution. 

In future research, an in-depth exploration of the performance of various deep learning models in 
river litter detection tasks is planned. Specifically, comparisons will be made between YOLOv10-N 
and other advanced object detection models, such as YOLO-world and the Segment Anything model, 
to evaluate their differences in detection accuracy, speed, and robustness. This comparison will aid in 
understanding the advantages and limitations of each model, facilitating the selection of the most 
appropriate model framework for future research and applications. Additionally, the quality and 
diversity of the dataset are recognized as essential for training efficient and accurate detection models. 
Therefore, incorporating data augmentation techniques to balance data distribution will be a part of 
the research, addressing the issue of class imbalance and enhancing the model's ability to recognize 
various types of litter. A variety of data augmentation methods will be explored, including image 
rotation, scaling, and color adjustment, to generate a more diverse set of training samples. Through 
these future research efforts, it is anticipated that the performance of river litter detection technology 
will be significantly enhanced, providing more reliable technical support for practical applications. 

5 Conclusions 
The focus of this study is on improving the performance of river litter detection by developing a 

comprehensive dataset of floating litter in rivers and applying it to deep learning models. The dataset 
covers 5 litter types and diferent morphologies, and is tested on the YOLOv10-N object detection 
algorithm. Experimental results show that the YOLOv10-N algorithm achieves 92.4% precision, 
90.2% recall, and 94.4% at 0.5 IoU, respectively. By incorporating a diverse range of litter types, such 
as plastic bottles, bags, boxes, cups, and aluminum cans, the dataset provides a solid foundation for 
training deep learning models to recognize and classify plastic waste accurately. These remarkable 
results not only demonstrate the quality of the dataset itself, but also its key role in improving model 
performance. The dataset ensures high annotation accuracy and abundant sample size through a 
carefully designed collection and annotation process, providing the necessary training and validation 
information for deep learning models. This diversity and meticulous annotations enable the model to 
capture the subtle features of plastic litter, thereby achieving high accuracy in the detection process. 
Future work will further explore how to expand the diversity of the dataset to optimize other deep 
learning models and how to apply it to a wider range of environmental monitoring tasks. 
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