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Abstract

In this paper we present our work towards an evaluation platform for data centre
transport protocols. We developed a simulation model for NDP', a modern data transport
protocol in data centres, a FatTree network topology and per-packet ECMP load balancing.
We also developed a data centre environment that can be used to evaluate and compare
data transport protocols, usch as NDP and TCP. We describe how we integrated our model
with the INET Framework and present example simulations to showcase the workings of
the developed framework. For that, we ran a comprehensive set of experiments and studied
different components and parameters of the developed models.

1 Introduction

The study of network protocols for Data Centre Networks (DCNs) has become increasingly
important, given that data centres support all major Internet services, such as search (e.g.
Google), social networking (e.g. Facebook), cloud services (e.g. Amazon EC2) and video
streaming (e.g. NetFlix). DCNs consist of a large number of commodity servers and switches
and support multiple paths among servers. Recent research on data centre networking is based
on various simulation tools and respective models for network protocols [16, 20, 19].
OMNeT++ [26] is an excellent candidate for developing models for data centre networks and
respective protocols, and more work is required for establishing it as the de facto simulator for
this research community. This is possible through the INET Framework, which is built on top of
the simulation core provided by OMNeT++. Omnet++ and INET is built around the concept
of modules that communicate by message passing. Protocols are represented by components,
which can be combined to form hosts, routers, switches and other networking devices. What
makes this framework ideal for evaluating DCN protocols is that new modules can be easily
integrated with the existing modules. DCN topologies (e.g. FatTree [1]) can be easily built and
parameterised using Omnet++ NED language.

Modelling DCN protocols in OMNeT++. Recently, some DCN-related research has been
based on OMNeT++/INET [21, 5, 11, 3, 4]. Achieving the critical mass of researchers that use
OMNeT++ for evaluating data centre networks and protocols requires making more modern
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protocols available in the OMNeT++ environment. Large-scale simulations are crucial for the
DCN research community given that access to real-world deployments is very difficult. Devel-
oping models for DCNs in OMNeT++ would also ensure reproducibility, revisability (dynamic
debugging and profiling) and control over the studied traffic workloads (generating realistic
traffic workloads in a deterministic fashion) [25].

Efficient data centre transport protocols. In DCNs; an efficient data transport mechanism
is crucial to provide near-optimal completion times for short transfers and high goodput for
long flows. The performance of TCP in DCNs is problematic due to TCP Incast [10], queue
build-up and buffer pressure [14, 24, 17] and per-flow ECMP collisions. TCP performance can
get singificantly degraded because of frequent retransmissions of lost packets [6, 17]. Recently,
a large body of work aimed at tackling various aspects of data centre transport: proposed
approaches usually focus on either achieving low latency [6, 22, 27, 21, 7] or high throughput
[17, 23, 12, 2]. NDP [14] appears to perform well with respect to both low latency and high
throughput requirements by combining a number of data transport mechanisms.

NDP and FatTree models. In this paper we present an OMNeT++/INET framework
for evaluating data transport protocols (NDP and TCP) in data centres. This includes: (1)
a model for building FatTree topologies to evaluate the performance of TCP, NDP and other
community-developed protocol models for data centres (§2), (2) a model for per-packet and per-
flow Equal-Cost Multi-Path (ECMP) load balancing in a FatTree topology (§3), (3) a model
for NDP (§4 and §5), and (4) a central traffic scheduler for scheduling flows in the simulated
network and setting up simulation parameters for experimenting with the above-mentioned
contributions (§5).

2 FatTree Topology

Among the recently proposed DCN topologies, FatTree, which originated from the Clos switch-
ing network, is widely used [1]. We developed a FatTree topology generator using the NED
language. FatTree data centres allow any two servers to communicate by fully utilising network
resources and ensuring non-blocking behaviour. The role of core switches is to forward traffic
among aggregation switches, and that of the aggregation switch is to inter-connect core and
edge switches. The edge switches reside at lowest level of the topology, and forward traffic
between hosts and aggregation switches (see Figures 1a&2). The size of a FatTree topology
depends on the number of pods it consists of (k). A FatTree network consists of three layers:
the core layer, aggregation layer and edge layer. In a k-ary FatTree topology there are k?/4
core switches which is the same number as the shortest-paths between any two servers that
are connected to any pod in the network. Each pod contains k servers and k switches. These
switches are divided into two layers each consisting of k/2 switches. The first layer is the edge
where each switch is connected to k/2 of the servers (a rack) in the same pod, while the second
layer is the aggregation layer where each switch is connected to k/2 of the core switches. Each
core switch is connected to one aggregation switch of each pod. The maximum number of
servers in a FatTree with k pods is /4. All switches have the same number of ports which is
equal to k. Table 1 summarises the construction of a k-ary FatTree (with examples when k =

é?egnael%'(allt]i%)g' FatTree networks. The implementation of the FatTree topology using the

NED language is based on the values in Table 1. The only required input value to generate the
topology is k. Figure 1 shows an example of a generated FatTree topology when k = 4. The
FatTree module is a network (complex) module that contains two simple modules: Pod and
Rack submodules. The NED code for the FatTree module is depicted in Figure 1la, which is
used to create a single link between each core switch and each pod.

2



Evaluating Modern Data Centre Transport Protocols in OMNeT++

M.Alasmar and G.Parisis

Pods k 4 18 10
Servers kxk/2xk/2 |16 | 128 | 250
Core switches (= servers in each Pod) | k/2 x k/2 4 116 | 25
Edge switches in each Pod (racks) k/2 2 |4 5
Aggregation switches in each Pod k/2 2 4 5
Total edge/aggregation switches kxk/2 8 24 50
Switch ports k 4 8 10
Equal-cost path between any pair of

servers (at different pod) k2 x k(2 4 16| 50

Table 1: k-ary FatTree topology architecture: examples when k£ = 4, 8 and 10
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Figure 2: (a) Per-flow ECMP vs (b) per-packet ECMP in 4-FatTree  Figure 3: NDP modules

3 Per-packet and per-flow ECMP

Modern data centre transport protocols exploit the existence of multiple equal-cost paths in
FatTree networks to better balance traffic in the network, eliminate hotspots and achieve high
throughput. ECMP is used for packet forwarding in the network [15]. In per-flow ECMP,
packets are classified into different flows by hashing the each packet’s 5-tuple (source IP address,
destination IP address, protocol number, source port number and destination port number).
Packets of the same flow go over the same link, as depicted in Figure 2a. Per-flow hashing
ensures that packets belonging to the same flow (or sub-flow in MultiPath TCP) will arrive in
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order to their destination. However, this can cause significant underutilisation in the network
due to collisions of large flows (i.e. when a large number of flows cross the same link while
other links are not used) and this can significantly reduce throughput, as discussed in [13].
In addition, per-flow load-balancing can result in unequal link utilisation and hotspots. In
per-packet ECMP, packet forwarding is randomised over all equal-cost links used for load
balancing, as shown in Figure 2b. Per-packet multipath forwarding is a good option when using
a data transport protocol that can tolerate reordering (e.g., NDP [14][3]). As per-packet ECMP
may result in packets arriving out of order, it cannot be used with data transport protocols
that are sensitive to packet reordering (e.g., TCP).

A model of per-packet and per-flow ECMP in INET. We implemented both per-packet
and per-flow ECMP by updating the source code that is provided in INETv3.6.3 network
layer. Routing in INET is done in five main steps as follows: (1) building topology and
assigning addresses (NetworkConfiguratorBase::Topology), (2) setting links and node weights
(IPv4NetworkConfigurator::computeConfiguration), (3) using Dijkstra’s Algorithm for multi-
ple paths (Topology::calculate WeightedSingleShortestPathsTo), (4) adding a route to all des-
tinations in the network (IPv4NetworkConfigurator::addStaticRoutes) and (5) generating the
routing tables (IPv4RoutingTable: :printRoutingTable).
When implementing ECMP, we updated step 3 so that all shortest paths to all destinations
are registered. Additionally, we updated step 4 to include the updates in step 3 when adding
routes to all destinations. The routing tables in step 5 are automatically updated. Finally, we
implemented the hashing function in IPv{RoutingTable::findBestMatchingRouteEcmp (which is
called by IPv4::routeUnicastPacket). There are two options for hashing:

e per-packet ECMP: selectPath = rand()% numPossibleEcmpRouts, and

e per-flow ECMP: selectPath = hashValue% numPossibleEcmpRouts, where the hash Value

is calculated based on the 5-tuple (we also included the router’s name in this hashing).

4 A model of NDP in INET

NDP aims at offering both low latency and high throughput in FatTree data centre networks.
NDP combines several ideas into a clean slate protocol design. NDP exhibits very good perfor-
mance by employing receiver-driven flow control and packet trimming. NDP will be deployable
when P4 switches [9] are deployed in data centres. NDP operation can be summarised as follows
(and depicted through the numbered circles in Figure 4). Senders are allowed to send an initial
window of data at line rate (circles 1 and 2). Switches use shallow buffers (e.g. 8 packets long)
with two queues: the data (used for data packets only) and control (high priority) queue (for
PULL, ACK, NACK and Header packets). If the data queue overflows, the packet payload is
trimmed and the header is priority-forwarded (circles 3, 4, 5 and 6). At the receiver, an ACK for
each data packet received and a NACK for each header will be sent immediately to the sender
(circles 7 and 8). The receiver has a shared PULL queue between all active connections. The
receiver adds a PULL packet for every received header or data packet (circle 9). The receiver
paces PULL packets so as to fill the receiver’s incoming link. Pacing is across all connections,
so that the aggregate rate matches the receiver’s link speed (circle 10). The goal is to keep the
incoming link full, so the receiver spaces pull requests accordingly (e.g. assuming each incoming

packet has the same MTU size = 1500B, then the receiver sends a packet every {Véﬁi = 12u

2This is an abstract diagram of NDP functionality — the details of NDP can be found in [14]
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Figure 4: NDP operation 2

seconds if the receiver’s link speed is 1Gbps). At the sender, PULL requests trigger either a
retransmission or a new data packet (circle 11).

Here we describe how we implemented NDP in INET. Our implementation follows the TCP
model in INET. We developed StandardHostNdp, a predefined NED type which is an OM-
NeT++ compound module that is composed of the following components:

Applications. There are two main applications that can communicate with the NDP layer,
as shown in Figure 3. The first application is the NdpBasicClientApp module, which is used
by NDP senders to start a connection. The second application module is NdpSinkApp which
is used by NDP receivers to listen for incoming connections. NDP applications and the NDP
layer communicate with each other by sending cMessage objects. These messages are specified
in the NDPCommand.msg file. The NDPCommandCode enumeration defines the types of
messages that are sent by the application to the NDP layer. These are the main message types:
NDP_C_OPEN_ACTIVE: active open, NDP_C_OPEN_PASSIVE: passive open, NDP_C_SEND:
send data and NDP_C_CLOSE: no more data to send. Each command message should have
attached control information of type NDPCommand. For example, the command message
NDP_C_OPEN_ACTIVE requires this control information to be attached: connld, localAddr,
locarPrt, remoteAddr, remotePrt and numPacketsToSend. In Figure 5, NdpSinkApp can open
a local port by sending a NDP_C_PASSIVE_OPEN to the NDP layer with control information
that contains the local address and port. NdpBasicClientApp opens a connection to a remote
server by sending a NDP_C_OPEN_ACTIVE command to the NDP layer.

NDP layer.The NDP module creates an NDPConnection object upon receiving either an
active or passive open command from an NDP application. The main message kinds that the
application receives from the NDP layer are: NDP_I_ESTABLISHED: connection established,
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NDP Sender NDP Receiver
NdpBasicClientApp module | NdpSinkApp module |
socket.connect(ACTIVE_OPEN) socket.bind(PASSIVE_OPEN)
listen
connld connld [
NDP module | NDP module |

* conn->process_OPEN_PASSIVE(msg)

e conn->process_OPEN_ACTIVE(msg) . .
*  NDPConnection:processPktInListen(pktSynTrue

*  NDPMSgBasedSendQueue::init(dataToSend) r
“ s+ ndpPkt->getIsDataPkt(true)
« sendInitial Window(): ndpPkt->setSynBit(true) 1
D = sendAckPkt(segNo)
*  NDPConnection::process_RCV_Pkt(ndpPkt) /
y => addRequestToPullQueue()
«  ndpPkt->getAckBit(true) &

*  ndpPkt->getlsHeaderPkt(true)
3 _—® = sendNackPkt(seqNo)
=> addRequestToPullQueue()
Schedule At(PACING_TIME, pullTimerMsg)
=> pullQueue->sendNewPull()
ndpPkt->finFlagTrue()

= sendQueue->ackArrivedFree(ndpPkt)
+  ndpPkt->getNackBit(true) &
= sendQueue->nackArrivedMoveFront(ndpPkt)

¢ ndpPkt->getIsPullPkt(true) <2
= sendQueue->sendNdpPkt()

* ndpPkt->setFinFlag(true)
=> pullQueue->removePulls()

Figure 5: NDP implementation

NDP_I_DATA: data packet received and NDP_I_PEER_CLOSED: FIN flag received from remote
NDP. The NDP module and the NDP applications implement NDP operations (as discussed in
§4) as follows:

1. The NDP sender performs the following operations (see Figure 5):

e creates the sendQueue for the data to be sent: NDPMSgBasedSendQueue::init(data),
e sends the initial window of data packets with SYN flag: sendInitial Window(),
e precesses received packet (can be ACK, NACK or PULL) from the receiver: NDPCon-
nection::process_.RCV_Pkt(ndpPkt). The sender takes one of the following actions:
— frees acknowledged data packet: sendQueue->ackArrivedFree(ndpPkt),
— queues NACKed data packet for retransmission: nackArrivedMoveFront(ndpPkt),
— sends data packet if PULL request arrived: sendQueue->sendNdpPkt(),

o sets the FIN flag when sending the last data packet: ndpPkt->setFinFlag(true).

2. The NDP receiver performs the following operations (see Figure 5):

e establishes a connection when receiving a data packet with the SYN flag set: NDPCon-
nection:processPktInListen(pktSynTrue),

e acknowledges a received data packet: sendAckPkt(seqNo),

e sends NACK when receiving header packet: sendAckPkt(seqNo),

e adds PULL packet to the PULL queue upon receiving either data or header packet:

addRequestToPullQueue(),
e schedules a self message that is used to pace pull packets from the PULL queue: Sched-

uleAt(PACING_TIME, pullTimerMsg)
e removes all pull packets when receiving the last data packet: pullQueue->removePulls()

Network layer. The IPv4 module performs IP encapsulation/decapsulation and routing of
datagrams. This is based on function call interface of the IPv4RoutingTable which we updated

6
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as discussed in §3.

NICs. We use the available NIC modules (PPPInterface and Ethernetinterface) that are
provided in the INET Framework.

NDP Switch. It contains two queues: (1) highPriorityQueue: which is used to enqueue
Header, ACK, NACK and PULL packets, and (2) dataQueue: which is used to enqueue data
packets. NDP switches trim packets when their dataQueue is full and insert the headers in the
highPriorityQueue. NDPSwitch:dequeue() is round robin (10:1 ratio) between the two queues.

5 Experimenting with the Simulation Framework

We developed a central scheduler node (centralSchedulerNdp®) to schedule NDP connections
in a FatTree topology (as shown in Figure 1). The main parameters in this node are shown in
Figure 1b and explained below:

o FatTreeSize. This is used to generate a k-ary FatTree topology (as described in §2)

o trafficMatrizType. The scheduler node can schedule either a permutation or random traffic
matrix (as explained in[18])

e arrivalRate. This is used to generate flow arrival times according to a Poisson process.
This is implemented by creating an exponential distribution (mean = 1/\) based on the
Poisson arrival rate .

o flowSize. This is the size of the data (number of packets) that each created NdpBasic-
ClientApp is going to send to an NdpSinkApp.

o numShortFlows. This is the number of NDP connections that will be scheduled based on
the selected traffic matrix, e.g. scheduling 1000 flows means that there are 1000 different
NdpBasicClientApps communicate with 1000 NdpSinkApps.

e longFlowSize and percentLongFlowNodes. These parameters are used to generate back-
ground traffic in the simulation. The background traffic can either run until all short
flows will finish or by assigning the size of the long flows to a large flow size. For example,
percentLongFlowNodes of 30% in a 10-FatTree (250 servers) topology means that there
are 75 servers that are used only to run background traffic.

o initial Window and ndpSwitchQueueLength. These are used as described in Section refndp-
section).

5.1 NDP Experiments

Here, we present experimentation using the developed NDP model. We conducted four different
experiments®.

Experiment 1. We ran this experiment with the parameters that are shown in Figure 1b in a 6-
FatTree (54 servers) where 15% of servers (8 servers) ran background load. The number of short
flows were 2000 and each flow had a size of 150KB. The results of this experiment are shown in
Figure 6 (one seed was used). The developed model provides the ability to record and plot the
following measurements: goodput (Figure 6a), flow completion time (FCT) (Figure 6b), the
number of received header packets per flow (connection) (Figure 6c¢), the number of data sending
applications at each server (Figure 6d), the number of data receiving applications at each server
(Figure 6d) and traffic matrix plot (Figure 6e). We use OMNeT++"s scavetool command-line

3We have developed another scheduler: centralSchedulerTcp, which is used for TCP experiments and it has
a similar interface as the NDP scheduler. It is used to schedule TCP connections in a FatTree topology.

4Due to space limitations we will not discuss simulations with TCP. Some of these results can be found
in [3].
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(a) Goodput (b) FCT (¢) Num. of received headers

(d) #created sender’s app.  (e) #£created receiver’s app. (f) Perm. traffic matrix

Figure 6: The results of running 2000 NDP short flows (150KB each) in a 6-FatTree (54 servers)

(a) Per-flow ECMP (b) Per-packet ECMP

Figure 7: Per-flow vs per-packet ECMP in 12-FatTree (36 core switches) topology. Each colour
in each bar (12 colours) represents the number of received packets at each port (12-port switch)

tool to process the results. These scripts can be found in the shell file (runNdpSimulation.sh)
that we use to run the simulation and generate several .csv files which are input to MATLAB
scripts to produce the required figures °. The results are as expected; most flows achievedvery
high goodput and low Flow Completion Times.

Experiment 2. In this experiment, we compare between per-flow and per-packet ECMP in a
FatTree topology. We have simulated the two protocols in a 12-FatTree (36 core switches) by
running 5000 short flows (300KB each) and with arrival rate A = 2000 (without introducing
any background load). The other parameters are as depicted in Figure 1b. Figure 7 illustrates
the number of received packets at each port of the 36 12-port core switches. It is obvious that

per-packet ECMP provides better load balancing than per-flow ECMP (as discussed in §3).
Experiment 3. In this experiment we test the performance of NDP when varying specific

parameters. A key parameter of NDP is the initial window of packets that a sender pushes
to the network. In Figure 8a, we observe that for very small values of the initial window, the
goodput is very low and the receiver’s downlink underutilised. As the window increases, utili-
sation approaches the maximum available link capacity (for 16 packets). For larger values, the
measured goodput is the same (full link capacity). In Figure 8b, we show the goodput of NDP
flows at different flow sizes (when A = 2500). Similarly, in Figure 8b, we obtain the goodput of
10000 flows (1.5MB each) at different A values.

Experiment 4. In the experiment, we use realistic web search workloads reported by data
centre operators to evaluate NDP [6]. We simulate two target loads of background traffic (0.5
and 0.8). We generate 20000 flows, with A = 2500. We report the flow completion time (FCT)
of all flows (split in two different ranges), as shown in Figure 9. NDP achieves low FCT.

6 Summary and future work

The proposed model is intended to be used to evaluate NDP and compare its performance
with existing models (e.g. TCP) in a FatTree data centre topology. The current implementa-

5The shell and MATLAB scripts are available in the GitHub repository, along with a demo.
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(a) Varying initial window (b) Varying flow size (c) Varying arrival rate A

Figure 8: NDP Goodput for 10000 flows in a 10-FatTree when varying specific parameter

SR

(a) Flow size (0, 100KB] (b) Flow size (100KB, 1MB]

Figure 9: FCT of web search workload flows (two ranges) at different background loads

tion supports most of NDP’s specifications. The current version of our NDP model does not
support priority pulling at the pull queue. As a future work, we plan to improve the NDP
model by allowing priority pacing in the pull queue for short flows. In addition, we aim at
leveraging multiple priority queues available in commodity switches to implement a Multiple
Level Feedback Queue (MLFQ). Also, we aim at evaluating NDP in Incast and Outcast sce-
narios and assess the provided fairness among competing flows. Furthermore, we plan to build
more OMNeT++ /INET-based models that simulate other modern data transport protocols for
DCNs, such as DCTCP[6], MPTCP[24], DCQCN|[28] and PIASIS].
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