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Abstract
Benchmarks Proposal: We provide benchmarks for stochastic models drawn from Build-

ing Automation Systems (BAS), specifically constructed from expertise developed on a real
BAS setup. This contribution branches out of the library of general models presented in [4],
specifically focussing on probabilistic models. Using this library, we generate two realistic
case studies which incorporate (i) stochasticity stemming from different sources (e.g. pro-
cess or observation noise on the continuous variables) and (ii) various input and output
signals. We describe each model structure (syntax and semantics), identify key problems
(specifications) for different analysis goals, and finally illustrate solutions for each goal.

1 Introduction
In order to advance research on stochastic systems, it is essential to have a practical way to
model and to reason about systems endowed with uncertainty. Uncertainty can be pervasive,
and possibly cover both the discrete components and the continuous variables of the system.
Currently, there are few and limited tools for simulation, verification, and policy synthesis over
models of stochastic (hybrid) systems [5,7,10]. These tools are typically specific to a particular
type of model structure, are often limited to a small number of continuous variables and require
expert knowledge on the specific formalism the tool relies on.

In this paper, we describe a library of stochastic models from the Building Automation
Systems (BAS) area, resulting in general benchmarks that can ease the test and development
of tools for simulation and verification of such models. The models are inspired by and built
around an experimental setup within the Department of Computer Science at the University
of Oxford, UK. The setup is part of on-going research in collaboration with estate engineers
and industrial partners in the sector. The library allows one to construct models with different
configurations and features: for instance, we can build low- to high-dimensional ones, with
discrete or continuous inputs and states. The models are endowed with stochasticity which
can represent un-modelled components, unknown parameters, random continuous effects, or
likelihoods of transitioning to a certain discrete state from the current location. Using this
library of models we setup two exemplary case studies which aim to address a verification and
policy synthesis, respectively. We focus on modelling temperature dynamics, a key element for
ensuring thermal comfort. In contrast, in this paper the focus is on a subset of models, namely
models endowed with stochastic elements together with the associated challenges.
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(a) 2-zone boiler-based heating system with air
handling unit and radiators

(b) Resistance-capacitance circuit for the internal
thermal dynamics within the two zones

Figure 1: Building automation system setup

This contribution has the following structure: Section 2 introduces the BAS modelling
framework together with the library of models. We develop and analyse two case studies in
Section 3. Finally, we present current challenges in modelling and analysis of stochastic systems
in Section 4.

2 Building Automation Systems

2.1 BAS: structure and components

BAS models clearly depend on the size and topology of the building, and on its climate control
setup. In this work, we consider the BAS setup shown in Figure 1a, which consists of two
teaching rooms that are connected to a boiler-heated system. The boiler supplies heat to the
heating coil within the air handling unit (AHU) and to two radiators. Valves control the rate of
water flow within the heating coils and the radiators. The AHU supplies air to the two zones,
which are connected back to back, and adjacent both to the outside and to an interior hall (see
Figure 1a). The zone air of both rooms can mix with the outside air and exchanges circulating
air with the AHU. Return water from the AHU heating coils and radiators is collected and
pumped back to the boiler. Figure 1b presents the Resistor Capacitance (RC) network circuit
of the two zones [6], which underpins the dynamics for temperature in the zone component
- corresponding equations are in Table 3. The heat level in each room is modified by (i)
radiative solar energy absorbed through the walls, (ii) occupants, (iii) AHU input supply air,
(iv) radiators, and (v) AHU return water. The effect of heat stored in the walls and in rooms
is depicted with capacitors, whereas thermal resistance to heat transfer by the walls is depicted
by resistor elements.
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Index Reference Index Reference Index Reference
a AHU adj adjacent zone adj, out adjacent exterior zones
b boiler d mixer hall hallway
i ∈ {1, 2} individual zones jn ∈ {2, 3, 7} zone walls with jw ∈ {5, 6} zone walls with

no windows windows
j ∈ {jn ∪ jw} all zone walls l ∈ {1, 2} adjacent interior zone occ occupants
out outside r radiator ref reference
rw return water sa supply air solar solar energy
sw supply water v collector w wall
z zone h water ar air

Table 1: Indices

Symbol Quantity Type Symbol Quantity Type
Ai area of windows of each zone constant Ben boiler switch discrete
C capacitance constant Cpa, Cpw specific heat capacity of air and water constant
CO2i

carbon-dioxide measurements in each zone input kb steady-state of the boiler constant
m mass air flow rate input n number of zones constant
Pout radiator rated power output constant\input Q heat gain input
R thermal resistance to heat from walls constant T temperature state\input
u mixing ratio input (UA) overall transmittance factor of constant
V volume of constant w water flow rate input
wmax maximum water-flow permitted by the valve constant X valve position input
{α, β, µ} de-rating and offset factors constants σ process noise constant
ρ density constant τ time constant constant

Table 2: List of variables, inputs, and parameters

2.2 BAS: dynamics and configurations
We define models for the individual components in the BAS system. Single components are
intended as separate physical structures within the BAS. Their models are built from the un-
derlying physics and are improved via industrial feedback and from existing literature [6]. We
obtain models with a number of unknown parameters: these are estimated and validated using
data collected from the BAS setup [9]. We list indices in Table 1, while all the quantities
(variables, parameters, inputs) are listed in Table 2. Table 3 presents all the relations among
variables in the model: algebraic relations define static couplings, whereas differential relations
define the dynamics for the corresponding variables. The structure in Figure 1a, the quantities
in Table 2, and the variables (with associated dynamics) in Table 3, together allow to construct
global models for the complete BAS setup. We refer to the set of models describing the individ-
ual components (cf. Table 3) as a library of models: one can select the individual components
and models from the library, and build different BAS configurations. One can also use the same
modelling principles to consider more complex BAS structures, for e.g. buildings with large
number of rooms or multiple heating elements.

A global model of the BAS set-up can be complex, comprising both algebraic and differential
relations that are further affected by process noise. A model also contains a number of inputs
which can either be construed as control signals or as exogenous signals. Some of the dynamics
are non-linear in view of continuous variables that are bi-linearly coupled (cf. AHU air duct
model in Table 3). Furthermore, the model features multiple components that present switching
discrete behaviours, affecting the dynamics of the continuous variables. In order to tackle the
complexity of global BAS models and to add a level of flexibility to the modelling framework,
we consider each BAS component as a separate module, characterised by inputs and output
elements, and by internal variables. We make use of individual modules describing component
type, and then connect different modules based on possible physical couplings. Coupling is also
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Component Continuous variables Relation

Boiler dTsw,b(t) =

{
0 Ben(t) = 0

(τsw)
−1

[(−Tsw,b(t) + kb)dt] + σswdW Ben(t) = 1
differential

Valve w(t) = (τ)
−1

[exp(ln(τ)X(t))wmax] algebraic

Mixer Td(t) = udTout(t) + (1− ud)(
∑
i

Tzi(t))(n)−1 algebraic

AHU heating coil dTrw,a(t) = (CpwρhVa)
−1

[(Cpwwa(t)(Tsw,b(t)− Trw,a(t)) + (UA)a(Td(t)− Trw,a(t)))dt] + σrw,adW differential

AHU air duct dTsai(t) = (CaρaVa)
−1

[ma(t)Cpa(Td(t)− Tsai(t)) + (UA)a(Tzi(t)− Tsai(t))]dt+ σsaidW differential

Radiator dTrw,ri(t) = (CpwρhVri)
−1

[(Cpwwri(t)(Tsw,b(t)− Trw,ri(t)) + (UA)ri(Tzi(t)− Trw,ri(t)))dt] + σrw,ridW differential

Zone dTzi(t) = (Czi)
−1

[
Twjn

(t)− Tzi(t)
Rij

+Qrw,ri(t) +Qocci(t) +Qsai(t)

]
dt+ σzidW

dTwjn(t) =
(
Cwjn

)−1

[
Tadj,out(t)− Tzi(t)

Rout
+
∑
l

Tadjl(t)− Twjn
(t)

Rlj
+Qrw,ajn(t)

]
dt+ σwjndW

dTwjw
(t) =

(
Cwjw

)−1

[
Tadj,out(t)− Tzi(t)

Rout
+
∑
l

Tadjl(t)− Twjw(t)

Rljw
+Qsolarjw(t) +Qrw,ajw(t)

]
dt+ σwjw

dW

Qrw,ri(t) = Pradi(α2(Trw,ri(t)− Tzi(t)) + α1), Qocci(t) = µi(CO2i(t)) + β1i , Qsai(t) = ma(t)Cpa(Tsai(t)− Tzi(t)))
Qrw,aj (t) = α3(Trw,a(t)− Twj (t)), Qsolarjw(t) = (α0AiTout(t) + β2)

differential

Collector Trw,b(t) = uvTrw,a(t) + (1− uv)(
∑
i

Trw,ri(t))(n)−1 algebraic

Table 3: Dynamics and functional relations among component variables

achieved via input-output relationships: e.g., in the zone module we have coupling between
two zones through the continuous variable Tadj,l corresponding to the adjacent zones, which
for the wall separating the two zones (cf. W7 in Figure 1b) corresponds to the individual zone
temperatures of the two zone modules (cf. Table 3 zone equations). Having such a modular
structure for the individual components provides an added level of versatility, since we can
connect different components to create various new models. Modularisation also allows (i) to
perform analysis of the whole setup by executing analysis of individual modules and (ii) to
extend the library of models by defining new modules that connect to existing modules via
their input-output relations.

3 Case studies

The library of models allows for a wide-spectrum of benchmarks to be generated. In this paper,
we focus on two such instances. The first deals with a verification problem, whereas the second
with a control synthesis one. For each (i) we establish the dynamics of the models, (ii) the
specification of interest, and (iii) we describe a solution. The individual models, together with
the corresponding parameter values, are given in further details within the ARCH website.

In both case studies, we describe the specifications in terms of Probabilistic Computational
Tree Logic (PCTL) (see [1]), specifically we make use of the PCTL safety property Φ given in
the form of,

Φ := P∼p[�≤n Φ]

where P is the probability operator, ∼ ∈ {≤,≥, <,=, >},n ∈ N and � refers to the always
operator. �≤n corresponds to Φ occurring with at most probability p for n time steps.
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3.1 Case study 1: Two-zone heating setup

3.1.1 Case study 1: model description

Figure 2: BAS setup for the first case study

Ms :


x[k + 1] = Ax[k] +Bu[k] +Q+ ΣW [k]

ys[k] =

[
1 0 0 0

0 1 0 0

]
x[k],

(1)

We consider two zones, each heated by one radiator and with a common supply air, as
portrayed in Figure 2. From Table 3, we select two components and corresponding models: the
radiator and the zone. We simplify these models with the following assumptions: (i) the wall
temperature is constant across the zones and is a fixed value (Tw,ss); (ii) the boiler is switched
ON providing a supply temperature Tsw,bss ; (iii) we fix both the mass air flow rate ma and the
radiator water flow rate wr; and (iv) we do not include the heat gain from the windows and the
AHU heating coils (Twss) in each zone. We obtain a model with the four state variables xT =
[Tz1 Tz2 Trw,r1 Trw,r2 ]T , a common supply temperature u = Tsa as an input and process noise
associated with each state. For this setup, we discretise using a Euler-Maruyama scheme having
a uniform sampling time ∆ = 15 minutes, and obtain a stochastic linear discrete-time model ex-
pressed using (1). Here, the matrices A, B are properly sized and constructed based on the mod-
els in Table 3, Q = [

Twss∆
Cz1R1

Twss∆
Cz2R2

Cpwwr1
∆

CpwρhVr1,b
Tsw,bss

Cpwwr2
∆

CpwρhVr2,b
Tsw,bss ]T with Ri representing the

mean resistance offered by the walls; and Σ = diag([(
√

∆σz1)2 (
√

∆σz2)2 (
√

∆σrw,r1)2 (
√

∆σrw,r2)2])

encompasses the variances of the process noise for each state. W =
[
w1 w2 w3 w4

]T are
independent Gaussian random variables, which are also independent of the initial condition of
the process. A simulation run is depicted in Figure 3a.

3.1.2 Case study 1: specification

In this case study we are interested in a stochastic safety property: to decide whether traces
generated by the models remain within a specified safe set for a given time period. Specifically,
this is described using the PCTL property:

Φ := P=p[�
≤N=1.5hours S]

where p is the probability of satisfaction, S is the safe set is described as an interval around the
temperature set-point TSP = 20oC ±0.5oC, specifically,

S =


19.5 20.5
19.5 20.5
19.5 20.5
19.5 20.5

 .
We defined the acceptable probability of the specification to be true for p ≥ 0.9.
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Figure 3: First case study

3.1.3 Case study 1: solution

We constrain the input u to lie within the set {Tsa ∈ R|15 ≤ Tsa ≤ 22} for (1) and employ
a fixed time horizon N = 6 × ∆ = 1.5 hours. We use FAUST2 [10] to perform probabilistic
reachability analysis of Ms. We define the safe set A and assume an input set of [15 22]. The
resulting adaptive partition of the safe set along with the optimal safety probability for each
partition set is depicted in Figure 3b. We can deduce that the model Ms has a high probability
of being within the required safe set, specifically to have Tz1 ∈ [19.5 20] and Tz2 ∈ [19.5 20.5].

3.2 Two-zone heating setup with large number of continuous variables

3.2.1 Case study 2: model description

In this second case study we focus on the stochastic dynamics of the zone component from
Table 3 and consider the two zones shown in Figure 1b. We assume that (i) a central fan
pumps in air in both rooms with a common supply temperature 15oC ≤ Tsa ≤ 30oC, (ii) the
input mass airflowma is fixed to 10 m3/hour and (iii) the return water temperature of the AHU
heating coils is fixed (Trw,ass = 35oC). The selected model is discretised using Forward-Euler,
with a sampling time ∆ = 15 minutes, to obtain the discrete-time model

Mc :

{
xc[k + 1] = Acxc[k] +Bcuc[k] + Fcdc[k] +Qc

yc[k] =
[
1 0 0 0 0 0 0

]
xc[k].

(2)

Here the variables are xc = [Tz1 Tz2 Tw5
Tw6

Tw2
Tw3

Tw7
]T , and a common fan supplies the

two zones with a supply rate uc = Tsa, whereas dc = [Tout Thall CO21
CO22

Trw,r1 Trw,r2 ]T

and Qc =
[ qc0

∆

Cz1

qc0
∆

Cz2

qc2
∆

Cw5

qc2
∆

Cw6

qc1
∆

Cw2

qc1
∆

Cw3

qc1
∆

Cw7

]
where qc0 = β1i

+α1Pradi , qc1 = α3Trw,ass and
qc2 = α0A2β2 + qc1 . Matrices Ac, Bc, Fc are properly sized. The vector dc corresponds to the
disturbance signals, while Qc represents constant additive terms within the model. We model
the disturbances as random external effects following Gaussian distributions with a mean µ and
variance σ, affecting the room temperature dynamics as Tout[k] ∼ N (µ = 9, σ = 1), Thall[k] ∼
N (µ = 15, σ = 1), CO2i

[k] ∼ N (µ = 500, σ = 100), i ∈ {1, 2}, Trw,ri [k] ∼ N (µ = 35, σ =
5), i ∈ {1, 2}.
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δ 1 10
−1
2 10−1 10

−3
2 10−2 10

−5
2 10−3

ε of Mc4 0.0008 0.1754 0.2084 0.2339 0.2555 0.2745 0.2910
ε of Mc3 0.0006 0.1933 0.2312 0.2598 0.2831 0.3065 0.3241
ε of Mc2 0.0011 0.1950 0.2373 0.2681 0.2928 0.3155 0.3278
ε of Mc1 0.0010 0.1953 0.2371 0.2595 0.2854 0.3103 0.3254

Table 4: Second case study: error metrics (ε, δ) for concrete and abstract models

3.2.2 Case study 2: specification

We would like to synthesise a policy ensuring that the temperature within zone 1 does not
deviate from the set point by more then 0.5oC over a time horizon equal to four hours (i.e
N = 16). This can be translated into following PCTL specification:

Φ := P=p[�
≤N=16 |Tz1 − TSP | ≤ 0.5]

over which p is to be maximised for the optimal policy. Here, TSP = 20oC.

3.2.3 Case study 2: solution

ForMc and the given specification aim at synthesising a policy maximising the safety probability
p. This synthesis goal can be computationally hard due to the number of continuous variables
making up Mc. To mitigate this limitation, we perform policy synthesis via abstractions [6].
We simplify (2) into four abstract models and are labelled asMca={4,...,1} , where a represents the
number of continuous variables of the corresponding abstract model. We can quantify the error
in the output variable, which has been introduced by the different levels of abstractions, through
the use of (ε, δ)-approximate simulation relations [6]. The pair (ε, δ) represents the deviation in
the output trajectories between complex and abstract models and the differences in probability
distribution of the processes, respectively. Such metrics allows the designer to select which of
the considered abstract models provides the best trade off in precision: it is desirable to achieve
little deviation in both the output trajectories (small ε) and in the probability distributions
(small δ). We compute (ε, δ)-approximate simulation relations between Mc and the set of
abstract models Mca={4,...,1} , as presented in Table 4. The (ε, δ) pair providing the optimal
trade off is obtained with the abstract model Mc1 and corresponds to (0.2854, 10−2). Next, we
use FAUST2 to perform a grid-based computation of the safety probability for Mc1 and obtain
a model of size 14893 with an overall accuracy of 0.005. Over this approximation we synthesise
the optimal policy for the abstract model which results in a safety probability of p′ = 0.9257.
We refine the obtained policy [6], which results in one that can be used with Mc. The overall
process results in Φ being satisfied with a safety probability of p = p′−η−Nδ = 0.7657, where η
is the abstraction error introduced by FAUST2. The results obtained further highlight that by
trading off the complexity in the number of continuous variables and computing (ε, δ)-simulation
relations, we can synthesise policies using simpler models, yet achieve high performance still
when the refined policy is applied to the original model.
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4 Challenges

The generality and richness of stochastic models introduces a number of difficulties when per-
forming analysis. These difficulties further reflect on the absence, to the best of the authors’
present knowledge, of general and scalable software tools for verification of and synthesis over
stochastic models. More specifically, we note that

• in contrast to the deterministic case, verification of continuous models with stochastic
and hybrid elements has not matured to the point where the community has agreed upon
an input standard that can be used to exchange problems. Consequently, benchmarking
different tools over stochastic models is at present a manual task. A first step towards
achieving automation is the development of a common description language, of which
JANI [3] is a notable first attempt.

• general verification goals are bound to be undecidable, and their approximated (and fi-
nite) versions are frequently stymied by state-space explosion. This restricts the level of
detail and complexity attainable for the verification of stochastic models. Furthermore,
at present there exist different stochastic verification tools dealing with specific dynam-
ical features and complexities, which makes it hard to compare results in the area. For
instance, Modest [7] deals with stochastic hybrid models in continuous time under the
assumption that the continuous variables are described by ordinary differential equations.
On the other hand, FAUST2 [10] deals with stochastic hybrid models in discrete time with
the continuous variables endowed with process noise following a Gaussian distribution.
Different still, [11] perform stochastic reachability analysis on uncontrolled, non-hybrid,
linear models using Fourier transforms.

• Similar to the previously raised point, the synthesis of control policies on such models is
also hindered by the curse of dimensionality. To this end, different techniques aimed at
speeding up formal algorithms through abstraction [10], or compositionality [6], or by
data-driven approaches, such as reinforcement learning [2, 8] have been developed. How-
ever, they all require specific types of models and work under their own set of assumptions.

These considerations highlight the evident need for further research in the area of computa-
tional verification and control synthesis over stochastic models. With this grand aim in mind,
in this paper we propose a set of general benchmarks for stochastic models: we see this as a
catalyst for further work on development of algorithms and software tools. In order to bolster
this action, we have further set up a new category (stochastic models) within the ARCH friendly
competition, and are aggregating interests of key players - often working separately on similar
problems in view of their different research areas and communities. We are as well working
towards obtaining a compositional software tool that is able to allow for easy construction of
stochastic models and for a seamless interfacing with different verification and synthesis tools.
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