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Abstract 

Solution of the nonlinear system of equations describing the network hydraulics 

problem can be formulated in several different manners, yielding various methods of 

solution. The most popular formulation is probably the Global Gradient Algorithm 

(GGA). Loop-flow formulation is another method revisited by number of researchers in 

recent years. Loop-flow method has the smaller system matrix to solve, which is a 

benefit over the GGA’s matrix, coming from the fact that real networks typically have 

far less loops than nodes. However, need for cumbersome pre-processing to identify 

network loops and sparsity of solution matrix, which is highly dependent of 

implemented loop identification algorithm, remain key drawbacks of existing loop-flow 

methods. In addition, systematic testing on the real life networks of different topologies 

and complexities is still somewhat lacking in the literature. In this paper, new loop-flow 

type method based on the novel TRIangulation BAsed Loop identification algorithm 

(TRIBAL) coupled with efficient implementation of loop-flow based hydraulic solver 

(ΔQ) is presented. Performance of the new TRIBAL ΔQ method based solver is tested 

through the comparison with the reference GGA solver. Preliminary results show that 

significant calculation speedups can be achieved with proposed method, maintaining 

prediction accuracy and convergence of the reference solver. 

1 Introduction 

The problem of water distribution system (WDS) analysis was systematized for the first time by 

Hardy Cross (Cross 1936). In past, many different methods and algorithms have been developed for 

the purpose of solving the flow and pressure distribution problem in the network, represented with the 

system of non-linear equations. As there are two sets of dependent unknowns (flows and pressures), 

selection of primary set of unknowns for which system is solved will yield different solution 

formulation. In most general classification of methods, they can be divided in two categories: 1) node 

equations based methods and 2) loop equations based methods (loop-flow methods). Solution matrix 
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of node based methods is larger than the one of the loop-flow methods, however the later method 

requires somewhat complicated pre-processing of network data (such as identification of the network 

loops), which can get cumbersome for networks of increased complexity. The need for such pre-

processing takes away from the loop-flow methods the advantage of having the smaller solution 

matrix compared to the node based methods (Todini & Rossman 2013). Probably the most popular 

method of solution is the node based Global Gradient Algorithm (GGA) (Todini & Pilati 1987), 

which is adopted in the Environmental Protection Agencies’ hydraulic analysis software EPANET. In 

recent years researchers presented different methodologies in an attempt to further improve the WDS 

analysis. Many of the newly presented methods are based on modifications of GGA method due to its 

wide acceptance and success achieved through its implementation in the EPANET software (Simpson 

et al. 2014; Simpson & Elhay 2011; Deuerlein et al. 2016). On the other hand, some researchers 

revisited the loop-flow method to solve network hydraulics (Alvarruiz & Vidal 2015; Ivetić et al. 

2016), for years being left in the shadow of the GGA’s success. As identified in aforementioned 

papers, loops identification procedure remains main task to deal with for the efficient implementation 

of the loop-flow method, as identification of the loops in any network is not unique. Consequently, 

identified set of loops will define the sparsity of the Jacobian solution matrix and affect the efficiency 

of the solver.  

In this paper, new algorithm for the identification of the network loops, based on the graph theory 

and constrained Delaunay triangulation is presented (TRIBAL). It is coupled with more efficient 

implementation of the loop-flow based solver to result in new TRIBAL-ΔQ method for the hydraulic 

analysis of WDS. Performance of the improved loop-flow based solver implemented in TRIBAL-ΔQ 

method is compared against: 1) GGA’s implementation in EPANET and 2) the loop-flow based solver 

that uses arbitrary set of loops (ASL- ΔQ). Comparison is made in terms of computational efficiency 

and convergence. ASL- ΔQ solver is introduced in order to highlight the influence of identified set of 

loops on the computational efficiency of the loop-flow based solver. 

2 Methods 

2.1 Loop-flow method (ΔQ method) 

ΔQ method is based on solving the head-loss equations for all loops in the network while 

satisfying continuity equations in all network nodes. General form of loop head-loss equation, 

accounting for the flow direction in the links is: 
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where i and j are end nodes of a link ij, Rij is flow resistance factor, Qij is link’s flow and n is head-

loss exponent. Loop-flow correction terms (ΔQ) are introduced in the loops in arbitrarily direction and 

flows in the former equation are expressed as the sum of initial flows (that satisfy continuity equation) 

and the introduced loop-flow corrections. Equations for all loops will form the non-linear system, 

written in matrix form as follows:  
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where M is loops incidence matrix relating loops to links; R is the link flow resistance vector; Qo 

is the links initial flow vector; ∆Q is the loops flow correction vector; Ao is the network incidence 

matrix, based on initial flows direction, reduced to source nodes; Ho is the vector of fixed heads at 

source nodes and operator ○ is Hadamard operator used for notation of element wise matrix 

operations. Number of equations in the system above (eq. 2) corresponds to the total number of loops 

in the network (nL). Two different types of loops can exist in any network: a) real loops formed 

between the junctions of the network (in eq. 1 0loopf  ) and b) pseudo loops formed between the 

source nodes in the network (in eq. 1 loop ijf H  ,  ijH being head difference between the source 

nodes i and j). Number of real loops (nRL) can be expressed as nRL=Nl-Nn+1 and number of pseudo 

loops (nPL) as nPL=Ns-1, where Nl is the number of links, Nn number of nodes and Ns number of 

sources (tanks and reservoirs) in the network. Linearization of the non-linear system using Newton-

Raphson linearization method will yield iterative solution for the loop-flow correction vector in the 

following matrix form: 

 
-1

1i i i iΔQ = ΔQ - J f         (3) 

 

where i is the iteration number and J is the iteration matrix, also known as the Jacobian matrix, 

containing the derivatives of the head loss functions for each loop in respect to loop flow corrections. 

2.2 TRIangulation BAsed Loops identification algorithm (TRIBAL) 

Unlike other available loops identification algorithms, that are based on the graph theory and 

various heuristics (Alvarruiz & Vidal 2015; Ivetić et al. 2016), the TRIBAL algorithm proposed here 

makes use of the graph theory and the Delaunay Triangulation (DT) algorithm. The DT algorithm is 

robust and efficient method, well known and proven in the field of computational geometry. For a 

given planar set of points, DT creates a mesh of triangles in such manner that there are no points 

inside of the circumcircle of any triangle created. In this research, constrained DT (CDT), which 

predefines some edges of triangulation is employed. The TRIBAL algorithm’s steps are listed and 

briefly illustrated on the following simple example (Figure 1).  

 

Figure 1: TRIBAL algorithm explained 
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Algorithm steps are: 1) Removing branched parts of the network (b); 2) Defining the set of 

constrained edges (CEs) for triangulation and perform CDT (c); 3) Modify the triangulation if 

network graph is not planar (by removing link 9-5) (d); 4) Identification of the non-constrained edges 

of CDT (NCEs) and creation of the triangles graph (TG) across NCEs (e); 5) Identification of outer 

triangle subgraphs and their deletion (T9-T8-T10-T7 and standalone T13 and T14 on Figure 1d); 6) 

Aggregation of remaining inner triangle subgraphs into loops (three loops); 7) Identifying loops 

created by the crossing links removed in the 3rd step (one loop) and 8) Identification of pseudo loops 

(loops between tanks and reservoirs), which are not present in the simple example. Pseudo loops are 

determined via Breadth First Search (BFS) propagation algorithm from one source node to all others. 

The use of the BFS algorithm ensures that identified pseudo loops have minimal topological length. 

2.3 TRIBAL-ΔQ method implementation 

Here proposed method is implemented in two phases. TRIBAL algorithm is used as a pre-

processor to identify loops (1st phase) for the follow on hydraulic simulation performed within 

improved ΔQ hydraulic solver (2nd phase). Hydraulic solver is implemented in the EPANET’s source 

code and compiled using C programing language to allow proper comparison of computational times 

with the reference GGA solver, already implemented in EPANET. Two new functions are added to 

the EPANET toolkit – ENInitLoops and ENRunLoops. ENInitLoops uses loops data obtained using 

the TRIBAL algorithm to allocate additional memory for the simulation purposes, while 

ENRunLoops performs hydraulic simulation of the network based on the improved ΔQ hydraulic 

solver. Various subroutines for efficient implementation of the ΔQ hydraulic solver are added in the 

ENRunLoops, which serves only as an interface function.  

Above described implementation enables fast and reliable solution of networks’ hydraulics, which 

starts with the calculation of initial flow distribution. Initial flow distribution in the network is 

obtained using back propagation through the minimum resistance spanning tree and applying 

continuity equation in nodes. System of loop-flow equations is solved using the same Cholesky 

factorization as in EPANET. Calculation of new coefficients for the links is done using EPANET’s 

newcoeff routine, which calculates inverse links headloss derivatives with respect to the link flow. 

This is convenient as links headloss derivatives with respect to the loop-flow corrections, used in the 

ΔQ based hydraulic solver, are only an inverse of those coefficients calculated by the newcoeff. 

During the iterative calculation, update of the coefficients is done only for the links that are part of 

loops, since other researchers proved that this part of calculation has the most significant 

computational burden (Alvarruiz & Vidal 2015). Iterative calculation for the loop-flow corrections 

(eq.3) is done until target convergence criteria (eps) is met. Head distribution in the network is easily 

obtained using the spanning tree and calculated head-losses. 

2.4 Case study 

For the preliminary analysis, two benchmark networks, shown in Figure 2, are used: 1) Balerma 

Irrigation Network (BIN) and 2) Pescara network (PES). Characteristics of the case study networks 

are summarized in the Table 1. Loop factor parameter (LF) is introduced to illustrate “loop-ness” of 

the network. It is calculated as the ratio of the number of links that belong to at least one loop and the 

total number of links. LF value ranges between 0 (branched network) and 1 (network with no branched 

parts).  

As Figure 2 and Table 1 indicate, BIN network has substantial amount of branched parts, which is 

expected since it’s an irrigation network, while PES network has almost no branched parts. For this 

exact reason these two networks are chosen, as they are completely different in topology. In both 

cases Darcy Weisbach headloss equation (n=2) is used for calculation of hydraulic headlosses, and 

only steady-state analysis is performed.  
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Flow and head distribution in the networks are solved using three different solvers: 1) GGA solver 

implemented in EPANET, 2) TRIBAL-ΔQ method solver and 3) ASL-ΔQ solver which is different 

than the TRIBAL-ΔQ only in the fact that it uses an arbitrary set of loops instead of the one 

determined with the TRIBAL algorithm. Two comparison criteria are used to compare 

aforementioned solvers: 1) computational efficiency (calculation speed) and 2) convergence (number 

of iterations). Two speedup factors are introduced as a measurement of speedup achieved with the 

loop-flow based solver compared to the GGA: 

 

 _

( )( )
;

( ) ( )
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where SPUF is speedup factor for the entire simulation and SPUF_iter is speedup factor per 

iteration. Simulation times reported here are execution times for the hydraulic solvers and do not 

include the initialization and pre-process tasks. Reported times are determined as average time of 10 

series of 10,000 cumulative algorithm runs. Target convergence criteria used is eps = 10-3.  

 

 

 

 

Figure 2: Case study networks layout: BIN network (left) and PES network (right) 

Network Nn Nl Ns nRL nPL nL LF 

BIN 447 454 4 8 3 11 0.36 

PES 71 98 3 28 2 30 0.96 
Table 1: Characteristics of the case study networks 

3 Results     

Performance of the three used solvers are illustrated, and compared per set comparison criteria, in 

the Table 2. From the Table 2 it is clear that in the case of BIN network, significant speedup factor of 

SPUF =3.51 is achieved with TRIBAL-ΔQ, compared to the GGA. Both methods converge in the 
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same number of iterations, TRIBAL-ΔQ being more efficient per iteration as the solution matrix is 

smaller and not all link coefficients are updated in each iteration. In the case of PES network speedup 

factor is much smaller (SPUF =1.265), but it is not negligible. This is expected as the loop factor for 

PES network is almost 1 (LF=0.96), compared to relatively low value of loop factor for BIN network 

(LF =0.36). In this case TRIBAL-ΔQ solver requires additional two iterations, when compared to the 

GGA, due to the significantly different initial flow distribution and larger number of loops (than the 

BIN network).  

As indicated in the introduction, ASL- ΔQ solver is introduced in order to highlight the influence 

of identified set of loops on the computational efficiency of the loop-flow based solver. When 

compared to the TRIBAL-ΔQ solver, ASL- ΔQ solver reaches target accuracy in the same number of 

iterations, but achieves lower speedup factors. The decrease of the SPUF is 2.14 % for the BIN 

network and 16.61 % for the PES network. This is a consequence of reduced solution matrix sparsity 

of ASL- ΔQ solver compared to the TRIBAL-ΔQ solver. Solution matrix sparsity can be expressed 

through the number of non-zero elements in the Cholesky factor of the Jacobian matrix, shown in the 

Table 3. From the Table 3 it is clear that in the case of BIN network there are only two additional non-

zero elements when ASL- ΔQ solver is used, compared to the TRIBAL-ΔQ solver, thus resulting in 

relatively small decrease in speedup factor. On the other hand, for PES network there are 51 

additional non-zero elements, which influence calculation speed significantly.  

 

Network parameter 
Solver 

GGA TRIBAL- ΔQ ASL- ΔQ 

BIN 

num of iter 6 6 6 

t (s) 3.859 1.087 1.111 

titer (ms) 0.064 0.018 0.019 

SPUF / 3.551 3.475 

SPUF_iter / 3.551 3.475 

PES 

num of iter 5 7 7 

t (s) 0.712 0.563 0.675 

titer (ms) 0.014 0.008 0.010 

SPUF / 1.265 1.055 

SPUF_iter / 1.771 1.477 

Table 2: Convergence and Computational efficiency comparison criteria 

Network GGA TRIBAL- ΔQ ASL- ΔQ 

BIN 1035 27 29 

PES 236 90 141 

Table 3: Number of non-zero elements in the Cholesky factor of the Jacobian matrix 

4 Conclusion  

This paper presents new loop-flow based methodology (TRIBAL- ΔQ) for the hydraulic analysis 

of WDS. As preliminary results suggest, method is well suited for the networks with substantial 

amount of branched parts. TRIBAL- ΔQ method based solver proved to be computationally faster 

than the GGA based solver for steady-state simulations and networks tested in this paper. Increase in 
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calculation speed is a result of: 1) application of new TRIBAL algorithm for identification of optimal 

loops in the network, which proved to be able to identify a set of loops that will result in a highly 

sparse solution matrix; 2) improved ΔQ solver updating only relevant links coefficients and 3) 

efficient implementation of new data structures needed for loop flow method in the C source code. 

Speedup achieved with this method, compared to the GGA, implies that the method could be 

convenient for the optimization tasks where multiple hydraulic runs are necessary and topology 

remains unchanged (e.g. sectorization of WDS). Further investigation will be taken to account for 

simulations with flow control devices and pressure driven analysis purposes. Speedup achieved with 

this method, compared to the GGA, implies that the method could be convenient for the optimization 

tasks where multiple hydraulic runs are necessary (e.g. sectorization of WDS).  
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