
Automated Reasoning in the Simulation of

Evolvable Systems

Djihed Afifi1, David E. Rydeheard1 and Howard Barringer1

University of Manchester, Manchester, U.K.
{djihed,david,howard}@cs.man.ac.uk

Abstract

We present a novel application of automated theorem proving for the logical simula-
tion of evolvable systems. Modelled using a logical framework, these systems are built
hierarchically from components where each component is specified as a first order theory
and may have an associated supervisory component. The supervisory component monitors
and possibly changes its associated component. The simulation of this framework makes
intensive use of automated theory proving – when running a simulation, almost all com-
putational steps are those of a theorem prover. We present this novel combination of a
logical setting involving meta-level logics and large sets of formulae for system description,
together with theorem proving requirements which involve often slowly changing specifica-
tions with the need for rapid assessment of deducibility and consistency. We illustrate how
theorem provers are used using an evolvable extension of the blocks world and present a
caching structure to reduce simulation times. We then evaluate the suitability of several
theorem provers for this application.

1 Introduction

We present an application of automated theorem proving for the simulation of computational
systems. The computational systems we consider are evolvable, i.e. may reconfigure their struc-
ture and programs at run-time. Examples include business process modelling [9], adaptive
query processing over changing databases [7] and data structure repair [4]. In [1], a logical
framework for describing such systems is introduced. The underlying logic of this framework
allows us to build a simulation engine for executing system specifications. This engine uses
automated theorem proving technology to determine the satisfiability of logical formula sets as
well as the deducibility of a logical formula.

The architecture of evolvable systems that we employ allows the ‘localisation’ of monitoring
and evolution. Components in a system may have ‘supervisors’ which are themselves compo-
nents and which monitor their ‘supervisees’ and may evolve them if required. Such supervised
components may be assembled hierarchically, with supervisors at each level of the hierarchy if
necessary (cf. Archware [14]).

In the logical framework [1], the state of a component is a set of ground atomic formulae that
describe the current properties of the system. An action operates on the state in a style similar
to STRIPS [8], changing the formula set by adding and deleting formulae. Models consist of sets
of interpretations of the theories of each component. This revision-based method of description,
which is common in planning and other AI applications, should be contrasted with the use pre
and post-conditions [10]. This revision-based approach leads to a simple mechanical execution
process, which we employ to build a simulator. This mechanisation makes intensive use of
automated theorem proving (ATP) technology. Some issues relating to the appropriateness of
the technology are:

• Changing verification requirements: ordinary actions affect the state only, while evolu-
tionary actions may involve changing a component theory as well as its state. Thus as a
system runs, theorem proving takes place in a highly dynamical setting.

R.A. Schmidt, S. Schulz, B. Konev (eds.), PAAR-2010 (EPiC Series, vol. 9), pp. 11–21 11



Automated Reasoning in the Simulation of Evolvable Systems Afifi, Rydeheard, and Barringer

• Determining the applicability of actions: an executed action may have a set of logical
formulae as preconditions. A valid application of an action requires that (a) the precondi-
tions are derivable from the system state and the component theory, and (b) the resultant
state is consistent.

• Handling meta-logics: the supervisor’s state is at a meta-level to that of the supervisee
allowing the supervisor to hold facts about the supervisee. the meta-level logic of the
supervisor’s state may hold facts about the supervisee. These facts need to be consistent
in the supervisor-supervisee pairing at all times during execution.

• Verifiability for minimum models: The revision-based logic used in system specifications
is based on a notion of ‘minimum model’ [1] and we require that deducibility is relative
to this minimality requirement. This requirement is related to the notions of the closed
world assumption and circumscription in AI [13].

The logic-based simulation imposes a range of requirements on any theorem prover including
the ability to:

• handle large sets of formulae for realistic systems,

• determine satisfiability of a set of formulae and deducibility of formulae from a given set
of axioms.

• run unassisted, as opposed to guided, to make it possible to run large simulations that
generate a high number of proof calls possible.

• construct models, not just establish satisfiability of a given formula set. Models are used
to instantiate free variables in formulae.

• extract ‘support sets’ of formulae for proofs: States are often large sets of formulae, but
those required to establish a property may be a small subset (often various different
minimal ‘support sets’ may exist). Identifying support sets can aid proof caching (see
below).

We have experimented with several theorem proving systems for this application:

• Paradox - from Chalmers University, a model finder for first-order logic [2].

• iProver - from The University of Manchester, an instantiation-based prover [11].

• Vampire - from The University of Manchester, a very fast resolution-based first-order
theorem prover [15].

One point about the dynamics of theorem proving invocation needs explanation: during simula-
tion, most individual actions cause a small change to the system, with the occasional evolution
action that changes and reconfigures a system. On the other hand, actions generate multiple
proof obligations that may duplicate prover dispatches. The execution of an action may trigger
up to seven proof obligations for some action types. Furthermore, the overhead of discharging
proof obligations is significant. The simulation of a simple system eventually spends a substan-
tial amount of time communicating theories and proof results to and from the theorem prover.
However, by examining simulations, we note that most changes do not affect state consistency,
and in many cases proof obligations are duplicated or are trivially resolved.

In order to reduce the overhead of theorem proving various forms of proof caching have been
employed. In general terms, proof caching is expensive. However, our particular application

12



Automated Reasoning in the Simulation of Evolvable Systems Afifi, Rydeheard, and Barringer

Figure 1: The scenario on the left shows the initial blocks world state, with a table having a
capacity of 2 (i.e at most two blocks directly on the table) a tower of blocks. The scenario on
the right shows a goal state that could be achieved by demolishing the tower and using a table
of capacity 4.

enables relatively simple approaches to speed up proof matching. The result is the elimination
of a significant number of proof calls and dramatic speed-ups of simulations. In most cases more
than 60% of proof obligations are eliminated with a corresponding increase in performance.

This framework uses a non-standard type of inference relative to a minimum model deter-
mined by a set of ‘observable formulae’. This is a generalisation of the notion that absence
of ground atoms indicates falsehood. The requirement to reason in ‘minimum models’ [1] is
handled in simple cases by a completion process in which we close observable predicates. The
general case of reasoning in minimum models combines this completion process with deducibil-
ity, but is not required for the system specifications we consider here.

In the next section, using an example, we will illustrate how theorem provers are used
during the simulation of an evolvable system, as well as the different between normal executions
and evolutionary execution. In section 4 we describe a caching technique that eliminates a
substantial number of proof dispatches. Finally, we discuss the results of experiments with
several different types of theorem provers in section 4 and draw conclusions in section 5.

2 Logical Simulation of Evolvable Systems

We illustrate how theorem provers are used in our logic-based simulation through the following
example of an evolvable blocks world [19]. This consists of a number of blocks which may be
on each other or on a table. Actions may move blocks around the world. A theory for a blocks
world is defined in Figure 2. This is a simplified theory for illustration purposes. A complete
axiomatisation of the blocks world is given in [3] and is used in the simulation. We will show
the simulation of a simple blocks world example and then illustrate how a supervisor may be
introduced to overcome its limitations.

The blocks world theory BlocksWorld defines a finite set of blocks {A,B,C,D} and a single
table T . The ‘BWC’ axiom defines constraints on the predicate ‘on’. The constraint ‘TableSize’
is a parametric formula that initially defines tables with a capacity of 2, i.e at most two blocks
may be directly on the table. The state of a blocks world component is recorded using ground
atoms built from the binary predicate ‘on’. We distinguish between ‘observation’ predicates and
‘abstraction’ predicates. A state is described using only observation predicates. Only positive
atoms of an observation predicate may be present in the state, those omitted are assumed to
be false. The schema defines the abstraction predicate ‘free’ that will be used to deduce the

13



Automated Reasoning in the Simulation of Evolvable Systems Afifi, Rydeheard, and Barringer

BlocksWorld

Types

Blocks
dfn
= {A,B,C,D}

Tables
dfn
= {T }

Objects
dfn
= Blocks ∪ Tables

Observation Predicates

on : Blocks×Objects

Abstraction Predicates

free : Objects

Constraints

BWC
dfn
=

∀b, b1, b2 : Blocks, o1, o2 : Objects ·
¬on(b, b) ∧
on(b, o1) ∧ on(b, o2) ⇒ (o1 = o2) ∧
on(b1, b2) ⇒ (∃o : Objects · on(b2, o))
· · ·

TableSize(T, 2)
dfn
=

(∃b1, b2 : Blocks · on(b1, T ) ∧ on(b2, T ) ∧ (b1 6= b2)) ⇔ ¬free(T ) ∧
∀b1, b2, b3 : Blocks · on(b1, T ) ∧ on(b2, T ) ∧ on(b3, T ) ⇒
((b1 = b2) ∨ (b2 = b3) ∨ (b1 = b3))

BlockSize(1)
dfn
=

∀b : Blocks · (∃b1 : Blocks, o : Objects · on(b1, b) ∧ on(b, o)) ⇔ ¬free(b) ∧
∀b1, b2 : Blocks · on(b1, b) ∧ on(b2, b) ⇒ (b1 = b2)

Actions

move(x : Blocks, y, z : Objects)
pre {on(x, z), free(x), free(y)}
add {on(x, y)}
del {on(x, z)}

Initial State

{on(D,C), on(C,B), on(B,A), on(A, T )}
Program

move(D,C, T );move(C,B, T );move(B,A, T )

Figure 2: The Blocks World schema. Some axioms to assert the non-circularity of ‘on’ have
been omitted from this paper for brevity. A full axiomatisation of the blocks world is given in
[3].

availability of free space on the table. Abstraction predicates are defined using the constraints
of the theory and may be deduced during simulation.

The component has the single action definition, ‘move’, that moves a block x from an object
y to an object z. The action is conditional on the set ‘pre’. The action is performed on the
state in a revision-based manner by deleting the atoms in the set ‘del’ and adding the atoms in
the set ‘add’.

The component has an initial state where the blocks form a tower on top of the table as
shown in Figure 1. The component is equipped with a program that demolishes the tower by
moving all blocks on the table in turn. The program is a sequence of ‘move’ actions.

When this specification is executed, the first requirement is that it is consistent, meaning
that its constraints and state together are consistent.

14



Automated Reasoning in the Simulation of Evolvable Systems Afifi, Rydeheard, and Barringer

After checking the component’s consistency, the component’s program is run. The first
action to be executed in the program is move(D,C, T ), which moves the the topmost block D

in the initial state to the table T . The action move has the precondition set pre which checks
that both the block and the receiving object are free. Precondition checking requires a theorem
prover to establish deducibility of the preconditions from the state formulae and the component
theory. If this is successful, the action revises the state by adding and deleting formulae as
defined in the schema. The resultant state in turn needs to be checked for consistency with the
component’s theory to ensure that no action renders the component inconsistent.

In order to continue demolishing the tower an attempt is made at the second action in
the program, move(C,B, T ). This will fail because the precondition cannot be met. The
precondition free(T ) cannot be deduced as the current blocks world theory is restricted to just
towers of blocks on the table as defined in TableSize. The only way to change this is to alter
the theory. To achieve this, we introduce another system that monitors this system and has the
ability to change the blocks world specification. We refer to this new system as a supervisor.

Supervisee

Supervisor

✛
✚

✘
✙

State1

✛
✚

✘
✙

State2

✛
✚

✘
✙

State3

✛
✚

✘
✙

State4

✛
✚

✘
✙

State5✲ ✲ ✲

move(D, C, T) move(C, B, T) move(B, A, T)

✛
✚

✘
✙State

′

1

✛
✚

✘
✙State

′

2

✛
✚

✘
✙State

′

3

✛
✚

✘
✙State

′

4

✛
✚

✘
✙State

′

5
✲ ✲ ✲ ✲

observe() observe() expand() observe()

✻ ✻ ✻ ✻ ✻

❄ ❄ ❄ ❄ ❄

Figure 3: A paired execution trace

BlocksWorldSupervisor in Figure 4 presents such a supervisory system. It records proper-
ties of its BlocksWorld supervisee using meta-level predicates. The holds predicate is used to
express properties of the supervisee. If holds(φ) occurs in the supervisor’s state, then φ should
be provable in the supervisee’s state. The supervisor can use this predicate to query and moni-
tor the supervisee. Similarly, the constraint predicate reflects the supervisee’s constraints. The
supervisor monitors the BlocksWorld using the action observe that tests formulae at the su-
pervisee level. It also has the action expand which makes use of the evolution predicate evolve.
The predicate evolve induces change at the supervisee level by revising the set of constraints
that it has.

Using the observe action, the supervisor queries the state of the supervisee and detects
when the table has an insufficient number of slots using the object level formula free(T ) as
reflected at the supervisor level. This is a paired execution of the two example programs where
the execution traces of the supervisor and the supervisee programs run in synchrony and are
related by a meta-view relationship as depicted in Figure 3.

The supervisor monitors the supervisee and only intervenes when all all space on the table
has been used, i.e when at the supervisee level ¬free(T ) holds. In this case, the expand action
alters the BlocksWorld by replacing the TableSize constraint with one that allows for one
more space. This is done using the evolve predicate, which introduces changes given by the
supervisor to the supervisee. In this example, the change is the replacement of a constraint. The
supervisor also has the ability to alter the state, redefine predicates or actions, or reconfigure
the supervisee with a new component structure.

Meta-level conditions reflected by the predicate holds are checked by firing proof obligations

15



Automated Reasoning in the Simulation of Evolvable Systems Afifi, Rydeheard, and Barringer

BlocksWorldSupervisor meta to BlocksWorld

Types

ConfigName

Functions

s : ConfigName → ConfigName
Observation Predicates

current : ConfigName

holds : formula× ConfigName

constraint : constraintName

evolve :
atoms× atoms×
constraintNames×
constraintNames× ConfigName

Constraints

· · ·
Actions

observe(P : formulae)
pre {current(c)}
add {holds(p, s(c)) | p ∈ P} ∪ {current(s(c))}
del {current(c)}
expand(n : Int)
pre {current(c), constraint(TableSize(T,m)),m < n}
add {current(s(c)), holds(free(T ), s(c)),

evolve({}, {},
{TableSize(T, n)}, {TableSize(T,m)},
{}, {}, s(c)),

constraint(TableSize(T, n))}
del {current(c), constraint(TableSize(T,m))}

Initial State

{current(c0)}

Figure 4: The Blocks World Supervisor schema

using the supervisee’s theory. The act of changing the supervisee’s constraint using the expand
action is called an evolution step. Theory consistency checks are necessary after performing the
evolution for both components to disallow evolutions that lead to inconsistent theories.

Finally, component programs may have guarded instructions in which an instruction is
executed only if its guard can be proved. We conclude this section by listing the cases where a
theorem prover is invoked during the simulation of a component:

1. Consistency in the theory and state of each component, checked before and after each
action. Models constructed in consistency checking may also be required.

2. Precondition testing by proving action preconditions.

3. Guarded choice checking by proving the guards.

4. Meta-level checking that the supervisee’s reflection in the supervisor is correct, done
before and after each evolution.

16



Automated Reasoning in the Simulation of Evolvable Systems Afifi, Rydeheard, and Barringer

Figure 5: A complete run of the blocks world

5. Post-evolution consistency, checking that evolutions don’t produce inconsistent spec-
ifications.

In the above list, items 1 and 5 invoke theorem provers for satisfiability checking, while
items 2, 3 and 4 invoke derivability checks.

2.1 System Simulation

In the example, the pairing of BlocksWorldSupervisor and BlocksWorld specifications will,
when executed, ensure the complete demolition of the tower. The supervisor intervenes repeat-
edly to evolve the supervisee and expand the table whenever it cannot accommodate any more
blocks. To achieve this, the supervisor is equipped with the following program:

([
|observe(free(T ))
|(observe(¬free(T )); expand())

])∗;
is demolished();

This program is an iteration of an non-deterministic choice instruction that queries whether
the table is free after every supervisee move action. The expand action is only performed when
the table is observed to be not free. The is demolished action performs a logical check to
determine whether the demolition objective was successfully reached.

A complete run of this paired simulation will result in a configuration trace tree as shown in
figure 5. Each node in this tree represents a state of the system configuration. This simulation
is exhaustive as it looks for all possible runs of the pair of the components (this search can
either be depth-first or breadth-first). The dark nodes indicate actions that have failed: this
occurs when a supervisee’s move action is not possible, or when an evolution is necessary. The
grey nodes represent successful runs where the run successfully demolished the tower. Following
the nodes in the trace tree, these successful runs occur when each block move is immediately
preceded by an evolution to expand the table size.

17



Automated Reasoning in the Simulation of Evolvable Systems Afifi, Rydeheard, and Barringer

Cache
dfn
= ComponentCacheKey → ComponentCache

ComponentCacheKey
dfn
= SchemaID × ConstraintNames

ConstraintNames
dfn
= ConstraintName∗

ComponentCache
dfn
= State → ProvenFormulae× UnprovenFormulaeSets

State
dfn
= Atom∗

ProvenFormulae
dfn
= Formula∗

UnprovenFormulaeSet
dfn
= FormulaeSet∗

FormulaeSet
dfn
= Formula∗

Figure 6: Cache Structure

3 Caching and Eliminating Proof Obligations

Simulating specifications can generate a substantial number of proof obligations. A basic non-
supervisory action generates two proof obligations for every sub-component that it modifies, but
an evolution action generates seven proof obligations for each pair of components that it affects.
The simulation of the previous relatively simple blocks world generates 35 deducibility checks
and 29 satisfiability checks. Firing an external theorem prover and communicating theories and
results uses a substantial amount of time relative to the simulation execution time. Given that
in any realistic simulation very large states will result and that the performance of a theorem
prover is typically non-linear with the size of the state, it is important to reduce the number
of dispatched proof obligations. Several techniques can be used to optimise execution and
discharge some of the proof obligations without the need to call an external theorem prover.

By examining simulations, we note that the most commonly executed actions are of a
basic type, which are occasionally interrupted by the rarer large system reconfigurations that
alter component theories or replace components. Most actions do not affect the axioms of
a component and therefore do not affect its internal consistency. A substantial number of
consistency checks can therefore be eliminated by storing the consistency results of previous
prover invocations. A component is given a ‘consistent’ flag that is set once and is reset when
actions changes are deemed to affect this consistency.

The state of a component contains only positive atoms of observation predicates. Therefore,
in some cases, when preconditions are themselves ground observable atoms, derivability reduces
to testing membership using symbolic equality. The minimum model interpretation means that
the absence of an atom of an observation predicates indicates its falsehood. This allows us
to reduce preconditions that rely heavily on observable predicates. It is often the case that
the precondition set is reduced to either the empty set (i.e preconditions are met) or to false,
eliminating the need for any external theorem prover.

3.1 Caching of Prover Results

A cache structure suitable for this application is depicted in Figure 6. Properties of our frame-
work make this cache structure relatively efficient.

The cache stores the prover invocation results for each component separately. To perform
lookup, a key for the cache consists of the name of the component together with the names of
its constraints. Only the signatures of the constraints are stored, e.g. TableSize(T, 2). This
eliminates the need to store whole formulae and simplifies component cache lookup. An example
of a cache key is

(BlocksWorld, {TableSize(T, 2), BlockSize(1)})

18



Automated Reasoning in the Simulation of Evolvable Systems Afifi, Rydeheard, and Barringer

(a) Blocks World Example (b) ATM Example

Figure 7: Prover invocation elimination using the caching technique

Each component is then associated with all states that it may have had in the past. For
each state that a component may have been in, the list of proved formulae is stored. Formulae
lookups are done syntactically, so this is efficient for looking up previously proved ground atoms.
The cache also stores the sets of formulae that were previously disproved given a state.

Looking up formulae in this cache is undertaken as follows. Given a proof obligation for the
formulae set S, once a cache key has been matched together with a state, S is reduced to the
set S′ by eliminating formulae that were previously proved. If S′ is the empty set then this is
considered a cache hit as proved formulae and a prover invocation is not necessary. if S′ is not
empty, it is compared with every set of the previously unproven formulae. If S′ contains any
of these sets then this is also a cache hit as unproven formulae. If S′ is not matched by any
unproven formulae set, an external prover invocation is necessary to determine the deducibility
of S′. If the prover returns a proved result then S′ is merged with the proved formulae in the
cache. if S′ is not proved it is added to the set of previously unproven formulae sets.

3.2 Performance

The caching technique eliminates a substantial number of proof obligations. In the blocks world
example, 20 out of 35 deduction requests (57%) and 24 out of 29 satisfiability requests (82%) are
eliminated. The running time is reduced from 16 seconds to 5 seconds on an AMD Athlon 2000+
processor with 1GB of RAM. Figure 7 shows the number of total proof dispatches and actual
external prover invocations for specifications that generate increasing program traces. The
ATM example, given in [1], models an evolvable banking and automated teller machines system
that enforces several layers of security using evolvable pairs. The trace size is an indication
of the number of actions being performed. The figure shows that the longer the simulation
the more beneficial caching becomes, with some simulations eliminating over 90% of all proof
obligations.

4 Comparing Theorem Provers

The simulator converts theories to classical untyped first order logic in the TPTP3 [18] format
so CASC (CADE ATP System Competition) [17] can be used. Three provers were used in this
study:

19



Automated Reasoning in the Simulation of Evolvable Systems Afifi, Rydeheard, and Barringer

Trace size Paradox iProver Vampire
28 5 12 15
58 8 18 22
78 11 24 32

Figure 8: Simulation time (in seconds) using different provers. Note that satisfiability checking
was done with Paradox when using Vampire.

• Paradox [2]: a finite model generator that flattens first order logic formulae into propo-
sition clauses, then uses the MiniSat [6] SAT solver to solve the resulting problem.

• Vampire 10 [15]: a fast resolution-based theorem prover.

• iProver [11]: an instantiation based prover that combines first order reasoning with a
SAT solver (using MiniSat [6]).

The table in Figure 8 shows the running time in seconds of the simulation using these provers.
The measure of the complexity of a simulation is the trace size, which grows approximately
linearly with the number of proof obligations being made.

For the blocks world example, Paradox was able to undertake both the satisfiability checks
and the proofs. It is fast at finding models for axiom sets and for checking counter satisfiability
[16]. Overall, it was the best performer of the three theorem provers for this application. Its
ability to determine the deducibility or otherwise the counter satisfiability of formulae makes
it the most suitable choice for this application.

Although Vampire’s resolution is fast, it is not appropriate to establish the counter satisfia-
bility of non-theorems, nor could it establish the satisfiability of theories in the above example.
This necessitates the use of other theorem provers for these purposes when using Vampire.

iProver is unique because it can do both resolution reasoning and SAT checking, but they
are done successively with manual options to turn off either features. Its resolution reasoning
is fast at establishing the non-satisfiability of sets of formulae and for deriving theorems, while
its SAT solving mode is fast at establishing the satisfiability of sets of axioms and the counter-
satisfiability of non-theorems. iProver can spend time unnecessarily using one of its modes for
an input that is best suited for the other mode.

5 Conclusion

This paper gave an overview of the practical aspects of using theorem provers for the simulation
of the evolvable systems framework presented in [1]. This framework differs from rewriting tools
such as Maude [12] in the fact that it allows for a supervisory model that improves usability
and the separation of concerns [5]. In the simulation, theorem provers are used to deduce
formulae from an axiom set and for establishing the satisfiability of sets of formulae. The
simulation generates a large number of proof obligations. However, a caching technique was
used to eliminate a substantial number of prover invocations and speed up simulation.

Three theorem provers were used in this study: Paradox [2], iProver [11] and Vampire [15].
Paradox’s model finding was best suited for establishing satisfiability of axiom sets as well as
the counter satisfiability of non-theorems. Although vampire’s resolution is fast, it could not
establish the counter-satisfiability of non-theorems. iProver’s manually changeable two modes,
resolution and SAT solving, could perform both tasks. In the future, running multiple theorem
provers in parallel could be performed to exploit the strength of each prover.

20



Automated Reasoning in the Simulation of Evolvable Systems Afifi, Rydeheard, and Barringer

References

[1] H. Barringer, D. Gabbay, and D. Rydeheard. Modelling evolvable component systems: Part I: A
logical framework. Logic Jnl IGPL, 17(6):631–696, 2009.

[2] K. Claessen and N. Sörensson. New techniques that improve MACE-style model finding. In Proc.
of Workshop on Model Computation (MODEL), 2003.

[3] S.A. Cook and Y. Liu. A complete axiomatization for blocks world. Journal of Logic and Com-
putation, 13(4):581, 2003.

[4] B. Demsky and M. Rinard. Data structure repair using goal-directed reasoning. In Software
Engineering, 2005. ICSE 2005. Proceedings. 27th International Conference on, pages 176–185,
2005.

[5] E.W. Dijkstra. On the role of scientific thought. Selected Writings on Computing: A Personal
Perspective, pages 60–66, 1982.

[6] N. Eén and N. Sörensson. An extensible sat-solver. In Proceedings of the Sixth International
Conference on Theory and Applications of Satisfiability Testing, LNCS 2919, pages 502–518, 2003.

[7] K. Eurviriyanukul, A. Fernandes, and N. Paton. A foundation for the replacement of pipelined
physical join operators in adaptive query processing. Current Trends in Database Technology–
EDBT 2006, pages 589–600.

[8] R.E. Fikes and N.J. Nilsson. STRIPS: A new approach to the application of theorem proving to
problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

[9] R.M. Greenwood, I. Robertson, B.C. Warboys, and B.S. Yeomans. An evolutionary approach to
process system development. In Proceedings of the International Process Technology Workshop,
Villard de Lans (Grenoble). Citeseer, 1999.

[10] C. B. Jones. Systematic Software Development using VDM. International Series in Computer
Science. Prentice-Hall, 1990.

[11] K. Korovin. iProver - an instantiation-based theorem prover for first-order logic (system descrip-
tion). In IJCAR, volume 5195 of Lecture Notes in Computer Science, pages 292–298. Springer,
2008.

[12] P. Lincoln M. Clavel, S. Eker and J. Meseguer. Principles of maude. In J. Meseguer, editor,
Electronic Notes in Theoretical Computer Science, volume 4. Elsevier Science Publishers, 2000.

[13] J. McCarthy. Circumscription–a form of non-monotonic reasoning. Artificial intelligence, 13(1-
2):27–39, 1980.

[14] F. Oquendo, B. Warboys, R. Morrison, R. Dindeleux, F. Gallo, H. Garavel, and C. Occhipinti.
ArchWare: Architecting Evolvable Software. In Proceedings of the 1st European Workshop on
Software Architecture (EWSA’04), European Projects in Software Architecture - Invited Paper,
LNCS, pages 257–271, St Andrews, UK, May 2004.

[15] A. Riazanov and A. Voronkov. The design and implementation of VAMPIRE. AI Communications,
15(2-3):91–110, 2002.

[16] G. Sutcliffe. The 4th IJCAR Automated Theorem Proving Competition. AI Communications,
22(1):59–72, 2009.

[17] G. Sutcliffe and C. Suttner. The State of CASC. AI Communications, 19(1):35–48, 2006.

[18] G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF Release v1.2.1. Journal of
Automated Reasoning, 21(2):177–203, 1998.

[19] T. Winograd. Understanding Natural Language. Academic Press, New York, 1972.

21


	Introduction
	Logical Simulation of Evolvable Systems
	System Simulation

	Caching and Eliminating Proof Obligations
	Caching of Prover Results
	Performance

	Comparing Theorem Provers
	Conclusion

