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Abstract

We investigate the logical difference problem between general EL-TBoxes. The logical
difference is the set of concept subsumptions that are logically entailed by a first TBox
but not by a second one. We show how the logical difference between two EL-TBoxes can
be reduced to fixpoint reasoning w.r.t. EL-TBoxes. Entailments of the first TBox can be
represented by subsumptions of least fixpoint concepts by greatest fixpoint concepts, which
can then be checked w.r.t. the second TBox. We present the foundations for a dedicated
procedure based on a hypergraph representation of the fixpoint concepts without the use of
automata-theoretic techniques, avoiding possible complexity issues of a reduction to modal
µ-calculus reasoning. The subsumption checks are based on checking for the existence
of simulations between the hypergraph representations of the fixpoint concepts and the
TBoxes.

1 Introduction

Ontologies are widely used to represent domain knowledge. They contain specifications of ob-
jects, concepts and relationships that are often formalised using a logic-based language over
a vocabulary that is particular to an application domain. Ontology languages based on de-
scription logics [2] have been widely adopted, e.g., description logics are underlying the Web
Ontology Language (OWL) and its profiles.1 Numerous ontologies have already been devel-
oped, in particular, in knowledge intensive areas such as the biomedical domain, and they are
made available in dedicated repositories such as the NCBO bioportal.2

Ontologies constantly evolve, they are regularly extended, corrected and refined. As the size
of ontologies increases, their continued development and maintenance becomes more challenging
as well. In particular, the need to have automated tool support for detecting and representing
differences between versions of an ontology is growing in importance for ontology engineering.

∗The second and third authors were supported by the German Research Foundation (DFG) within the Cluster
of Excellence ‘Center for Advancing Electronics Dresden’.
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2http://bioportal.bioontology.org
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The logical difference is taken to be the set of queries that produce different answers when
evaluated over distinct versions of an ontology. The language and the vocabulary of the queries
can be adapted in such a way that exactly the differences of interest become visible, which can be
independent of the syntactic representation of the ontologies. We consider ontologies formulated
in the lightweight description logic EL [1, 3] and queries that are EL-concept inclusions. The
relevance of EL for ontologies is emphasised by the fact that many ontologies are largely, or
even entirely, formulated in EL. For instance, the dataset of the OWL Reasoner Evaluation
workshop (ORE) in 2014 comprises 8 805 OWL-EL ontologies.3

The logical difference problem was introduced in [10] and investigated for EL-terminologies
in [9]. A hypergraph-based approach for EL-terminologies was presented in [5], which was
subsequently extended to EL-terminologies with additional role inclusions, and domain and
range restrictions of roles in [11]. In this paper we present an extension of the hypergraph-based
approach for general EL-TBoxes. Clearly, such an extension needs to account for the additional
expressivity of general TBoxes w.r.t. terminologies. After normalisation, a terminology may
contain at most one axiom of the form ∃r.A v X or A1 u . . . u An v X (with n ≥ 2) for any
concept name X, whereas a general TBox does not impose such a restriction.

For deciding the logical difference between two EL-TBoxes T1, T2 w.r.t. a finite set of
terms (signature) Σ, we show that one can represent all the concept inclusions which only use
terms from Σ and which follow from T1 as finitely many subsumptions αi between least and
greatest fixpoint concepts. Subsequently, one has to check whether each subsumption αi follows
from T2. Fixpoint reasoning w.r.t. TBoxes has been studied in [4] based on automata-theoretic
techniques. For our purposes, however, it is not immediate how a practical algorithm can
be derived from the decidability and complexity results for the modal µ-calculus stated in the
literature. In this paper we extend our approach to general EL-TBoxes motivated by the success
of our hypergraph-based procedure for the logical difference problem of EL-terminologies [5,6,11]
and by the fact that cycles in TBox definitions can be innately handled by simulations between
hypergraph representations of the TBoxes.

We proceed as follows. In the next section we start with reviewing the DL EL together with
its extensions with disjunction and the least and greatest fixpoint operators as well as with
defining some auxiliary notions. In Section 3 we introduce a reduction of the logical difference
problem for general EL-TBoxes to fixpoint reasoning. However, this reduction is exponential,
and fixpoint reasoning w.r.t. TBoxes is known to be ExpTime-complete [4]. Hence, the reduc-
tion only yields a double exponential upper bound for deciding the logical difference problem,
whose complexity has been shown to be ExpTime-complete for EL-TBoxes [12]. We therefore
develop a hypergraph-based approach which avoids the complexity gap in Section 4. Our ap-
proach involves constructing hypergraph representations for least fixpoint concepts and graph
representations for greatest fixpoint concepts. Subsumption between the fixpoints concepts
w.r.t. a TBox can then be decided by checking for the existence of certain simulations between
the (hyper)graph representations and by taking the TBox into account. The (hyper)graph rep-
resentations can be built in exponential time, whereas the existence of the simulations can be
checked in polynomial time. In Section 5 we then present an algorithm for solving the logical
difference problem, which makes use of the notions developed in Section 4. Finally, we conclude
the paper in Section 6.

3http://dl.kr.org/ore2014/
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2 Preliminaries

Let NC, NR, and NV be mutually disjoint sets of concept names, role names, and variable names,
respectively. We assume these sets to be countably infinite. We typically use A,B and X,Y, Z
to denote concept names, r, s, t to indicate role names, and x, y to denote variable names.

The set of ELU⊥,µ,ν-concepts C are built according to the following grammar rule:

C ::= ⊥ | > | A | C u C | C t C | ∃r.C | x | µx.C | νx.C

where A ∈ NC, r ∈ NR, and x ∈ NV. We denote with ELU⊥,µ,ν the set of all ELU⊥,µ,ν-
concepts. For an ELU⊥,µ,ν-concept C, the set of free variables in C, denoted by FV(C), is defined
inductively as follows: FV(⊥) := ∅, FV(>) := ∅, FV(A) := ∅, FV(D1uD2) := FV(D1)∪FV(D2),
FV(D1tD2) := FV(D1)∪FV(D2), FV(∃r.D) := FV(D), FV(x) := {x}, FV(µx.D) := FV(D)\
{x}, and FV(νx.D) := FV(D) \ {x}. An ELU⊥,µ,ν-concept C is closed iff C does not contain
free occurrences of variables, i.e. FV(C) = ∅; and C is well-formed if every subconcept of the
form µx.D or νx.D occurring in C binds a fresh variable x. In the remainder of this paper we
assume that every ELU⊥,µ,ν-concept is well-formed.

An ELU⊥,µ,ν-axiom is either a concept inclusion C v D or a concept equation C ≡ D, for
ELU⊥,µ,ν-concepts C,D.

The semantics of ELU⊥,µ,ν is defined using interpretations I = (∆I , ·I), where the domain
∆I is a non-empty set, and ·I is a function mapping each concept name A to a subset AI of
∆I and every role name r to a binary relation rI ⊆ ∆I ×∆I . Interpretations are extended to
complex concepts using a function ·I,ξ that is parameterised by a variable assignment function
that maps each variable x ∈ NV to a set ξ(x) ⊆ ∆I . Given an interpretation I and a variable
assignment ξ, the extension of an ELU⊥,µ,ν-concept is defined inductively as follows: ⊥I,ξ := ∅,
>I,ξ := ∆I , xI,ξ := ξ(x) for x ∈ NV, (C1 uC2)I,ξ := CI1 ∩CI2 , (∃r.C)I,ξ := {x ∈ ∆I | ∃y ∈ CI,ξ :
(x, y) ∈ rI }, (µx.C)I,ξ :=

⋂
{W ⊆ ∆I | CI,ξ[x 7→W ] ⊆W }, and (νx.C)I,ξ :=

⋃
{W ⊆ ∆I |W ⊆

CI,ξ[x 7→W ] }, where ξ[x 7→W ] denotes the variable assignment ξ modified by mapping x to W .
For ELU⊥,µ,ν-concepts C and D, an interpretation I satisfies C, an axiom C v D or C ≡ D

if, respectively, CI,ξ∅ 6= ∅, CI,ξ∅ ⊆ DI,ξ∅ , or CI,ξ∅ = DI,ξ∅ , where ξ∅(x) = ∅ for every x ∈ NV.
We write I |= α iff I satisfies the axiom α.

In particular we will be using the following sublanguages of ELU⊥,µ,ν : EL, EL⊥, ELU ,
ELU⊥, ELUµ, ELU⊥,µ, and ELν . As usual the letters EL indicate the presence of concept
names and the concept constructors ‘>’, ‘u’, and ‘∃r.◦’; the letter U stands for ‘t’. The
subscript ⊥ indicates the presence of ‘⊥’, and the subscripts µ and ν indicate the availability of
the least and greatest fixpoint operators ‘µx.◦’ and ‘νx.◦’, respectively, and of variable names.
We use calligraphic letters C, D, or E , to denote concepts that may contain a fixpoint operator,
otherwise we use capital letters C, D, or E. We denote with L the set of all L-concepts, where
L ∈ {EL, EL⊥, ELU , ELU⊥, ELU⊥,µ, ELν}.

An EL-TBox T is a finite set of axioms, where an axiom is either a concept inclusion
C v D, or a concept equation C ≡ D, for EL-concepts C,D. An interpretation I satisfies
a TBox T iff I satisfies all axioms in T ; in this case, we say that I is a model of T . An
ELU⊥,µ,ν-axiom α follows from an EL-TBox T , written T |= α, iff for all models I of T , we
have that I |= α. Note that for deciding T |= α it is sufficient to only consider finite models I
of T [4], i.e. interpretations I = (∆I , ·I) where ∆I is finite and I satisfies T . Deciding whether
T |= C v D, for two EL-concepts C and D, can be done in polynomial time in the size of T
and C,D [1, 3].

A signature Σ is a finite set of symbols from NC and NR. The signature sig(C), sig(α), or
sig(T ) of the concept C, axiom α, or TBox T is the set of concept and role names occurring in C,
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α, or T , respectively. Analogously, sub(C), sub(α), or sub(T ) denotes the set of subconcepts
occurring in C, α, or T , respectively. We denote with LΣ the set of L-concepts built from
symbols in Σ only, where L ∈ {EL, EL⊥, ELU , ELU⊥, ELU⊥,µ, ELν}.

An EL-TBox T is normalised if it only consists of EL-concept inclusions of the forms > v B,
A1u . . .uAn v B, A v ∃r.B, or ∃r.A v B, where A,Ai, B ∈ NC, r ∈ NR, and n ≥ 1. Every EL-
TBox T can be normalised in polynomial time in the size of T with at most a linear increase
in the size of the normalised TBox w.r.t. T such that the resulting TBox is a conservative
extension of T [9].
ELU⊥,µ-concepts can be simplified by pushing occurrences of ⊥ to the top-most level, re-

sulting either in ⊥ or in a concept in which ⊥ does not occur. For an ELU⊥,µ-concept C, we
define the ELU⊥,µ-concept simp⊥(C) inductively as follows:

• simp⊥(ϕ) := ϕ for ϕ ∈ NC ∪ NV ∪ {⊥,>};
• simp⊥(C u D) := ⊥ if simp⊥(C) = ⊥ or simp⊥(D) = ⊥, otherwise simp⊥(C u D) :=

simp⊥(C) u simp⊥(D);

• simp⊥(C t D) :=
⊔
{ simp⊥(F) | F ∈ {C,D} and simp⊥(F) 6= ⊥};

• simp⊥(∃r.C) :=
⊔
{ ∃r.simp⊥(C) | simp⊥(C) 6= ⊥}; and

• simp⊥(µx.C) := ⊥ if simp⊥(C) = ⊥, otherwise simp⊥(µx.C) := µx.simp⊥(C).

Example 1. We have that simp⊥(A u ∃r.(⊥ t B)) = A u ∃r.B, simp⊥(A t µx.(⊥ u x)) = A,
and simp⊥((∃r.⊥) t (µx.⊥)) = ⊥.

An ELU⊥-concept C is in disjunctive normal form (DNF) if C is of the form
⊔n
i=1 Ci, where

Ci is an EL⊥-concept, for every i ∈ {1, . . . , n} with n ≥ 0. Every ELU⊥-concept C can be
transformed in an equivalent ELU⊥-concept in DNF in exponential time in the size of C by
iteratively replacing subconcepts of the form (D1 tD2) uD3 with (D1 uD3) t (D2 uD3), and
subconcepts of the form ∃r.(D1 t D2) with (∃r.D1) t (∃r.D2). We denote with DNF(C) the
result of transforming C into DNF.

For an ELU⊥-concept C, we set conceptsEL(C) = {C1, . . . , Cn}, where C1, . . . , Cn are EL-
concepts (n ≥ 0) such that simp⊥(DNF(C)) =

⊔n
i=1 Ci.

Definition 2 (EL-Unfoldings of Fixpoint Concepts). Let L ∈ {ELU⊥,µ, ELν} and let C be a
closed L-concept. We define the L-unfolding of C, UF(C), as the smallest set of L-concepts
closed under the following conditions:

(i) C ∈ UF(C);
(ii) If C′ ∈ UF(C) and τx.D is a subconcept of C′ for τ ∈ {µ, ν}, then simp⊥(C′′) ∈ UF(C),

where C′′ results from C′ by substituting all occurrences of the subconcept τx.D in C′ with
D[x 7→ τx.D].

For an ELU⊥,µ-concept C (ELν-concept D) we define the set UFµ(C) (UFν(D)) to be set of all
ELU⊥-concepts (EL-concepts) obtained from concepts C′ ∈ UF(C) (D′ ∈ UF(D)) by substituting
every occurrence of a concept µx.C in C′ with ⊥ (νx.C in D′ with >). Finally, for an ELU⊥,µ-
concept C we set UFEL(C) :=

⋃
C∈UFµ(C) conceptsEL(C), and for an ELν-concept D we define

UFEL(D) := UFν(D).

Example 3. Let C = µx.(A t ∃r.x) and D = A u νy.(∃r.y). Then we have that UFEL(C) =
{A, ∃r.A, ∃r.∃r.A, . . . } and UFEL(D) = {A u ∃r.>, A u ∃r.∃r.>, . . . }.

Together with the finite model property of ELU⊥,µ,ν [4], an ELU⊥,µ-concept C is equiva-
lent to the (possibly infinite) disjunction of EL-concepts in UFEL(C). Analogously, an ELν-
concept D is equivalent to the (possibly infinite) conjunction of EL-concepts in UFEL(D).
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Lemma 4. Let C be a closed ELU⊥,µ-concept and let D be a closed ELν-concept. Additionally,
let I = (∆I , ·I) be an interpretation such that ∆I is finite and let ξ be a variable assignment.
Then the following statements hold:

(i) CI,ξ =
⋃
C′∈UFEL(C)(C

′)I,ξ;

(ii) DI,ξ =
⋂
D′∈UFEL(D)(D

′)I,ξ.

3 Deciding the Logical Difference between EL-TBoxes via
Fixpoint Reasoning

The logical difference between two EL-TBoxes witnessed by concept inclusions over a signa-
ture Σ is defined as follows.

Definition 5. The Σ-concept difference between two EL-TBoxes T1 and T2 for a signature Σ is
the set cDiffΣ(T1, T2) of all EL-concept inclusions α such that sig(α) ⊆ Σ, T1 |= α, and T2 6|= α.

Generally, the difference set cDiffΣ(T1, T2) is infinite if it is not empty. In the case of EL-
terminologies (i.e. EL-TBoxes of a simpler form as defined in, e.g., [9]), a “primitive witnesses”
theorem from [9] states that we only have to consider two specific types of concept differences.
If there is a subsumption C v D ∈ cDiffΣ(T1, T2) for two terminologies T1 and T2, then there
exists a concept name A ∈ Σ such that A occurs either on the left-hand or the right-hand side
of a subsumption in cDiffΣ(T1, T2). Thus, for checking whether cDiffΣ(T1, T2) = ∅, we only
have to consider such simple subsumptions. If T1 and T2 are general EL-TBoxes, however, the
situation is different as illustrated by the following example.

Example 6. Let T1 = {X ≡ A1 u A2, X v ∃r.>}, T2 = ∅, and let Σ = {A1, A2, r}. Note that
T1 is not a terminology as the concept name X occurs twice on the left-hand side of an axiom.
Then every inclusion α ∈ cDiffΣ(T1, T2) is equivalent to the inclusion A1 u A2 v ∃r.>, i.e.,
there does not exist a difference of the form ψ v θ, where ψ or θ is a concept name from Σ.

For T3 = {A v X, ∃r.X v ∃r.Y, Y v B}, T4 = {A v B}, and Σ = {A,B, r}, we have that
cDiffΣ(T3, T4) = ∅.

Finally, let T5 = {∃r.A1 v B, ∃r.A2 v B}, T6 = {∃r.X v B, A1 v X, A2 v X}, and
Σ = {A1, A2, B, r}. Then cDiffΣ(T5, T6) = ∅.

We need to account for a new kind of differences C v D ∈ cDiffΣ(T1, T2) which are induced
by a concept name X ∈ sig(T1) such that X 6∈ Σ, T1 |= C v X, and T1 |= X v D. We
obtain the following witness theorem for EL-TBoxes as an extension of the witness theorem for
EL-terminologies.

Theorem 7 (Witness Theorem). Let T1, T2 be two normalised EL-TBoxes and let Σ be a
signature. Then, cDiffΣ(T1, T2) 6= ∅ iff one of the following conditions is satisfied:

(i) ϕ v A ∈ cDiffΣ(T1, T2) for some ϕ ∈ ELΣ and A ∈ Σ, or

(ii) A v ψ ∈ cDiffΣ(T1, T2) for some ψ ∈ ELΣ and A ∈ Σ, or

(iii) there exists X ∈ sig(T1) \ Σ and ϕ,ψ ∈ ELΣ such that T1 |= ϕ v X, T1 |= X v ψ, and
T2 6|= ϕ v ψ, or

(iv) > v ψ ∈ cDiffΣ(T1, T2) for some ψ ∈ ELΣ.
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The proof of the witness theorem for terminologies [9] is based on analysing a subsumption
T1 |= ϕ v ψ for ϕ v ψ ∈ cDiffΣ(T1, T2) syntactically, using a sequent calculus [8]. A similar
technique can be used for the proof of Theorem 7.

We use the following as a running example to illustrate our procedure for deciding the logical
difference between EL-TBoxes.

Example 8. Let T1 be a normalised EL-TBox consisting of the following axioms:

A v Y1 ∃s.Y1 v X1 X1 v ∃s.Z1 Z1 v B
∃r.V1 v Y1 Z1 v ∃t.Z1

A′ u Y1 v V1

Additionally, let T2 be a normalised EL-TBox consisting of the following axioms:

A v X2 ∃r.X2 v Y2 X2 v B Y2 v X2

∃r.V2 v X2 ∃r.Z2 v Z2 X2 v ∃t.W2 Z2 v ∃t.X2

∃r.X2 v V2 A v Z2 W2 v ∃t.X2 Z2 v B
W2 v B

Finally, let Σ = {A,A′, B, r, s, t} be a signature. Then cDiffΣ(T1, T2) = ∅.

According to Theorem 7 we have to consider four types of differences for deciding whether
cDiffΣ(T1, T2) = ∅ in the case of two general EL-TBoxes T1 and T2. In this paper we focus on
differences of Type (iii); differences of Type (i), (ii), and (iv) can be handled similarly.

For a concept name X in sig(T1)\Σ, we say that X witnesses a Σ-concept difference if there
exists a C v D ∈ cDiffΣ(T1, T2) with T1 |= C v X and T1 |= X v D. For checking whether X is
indeed a difference witness, we need to consider all such subsumptions w.r.t. X that may occur
in cDiffΣ(T1, T2). To this end we construct two Σ-concepts (using symbols from Σ only) BΣ

T1(X)

and FΣ
T1(X) formulated respectively in ELU⊥,µ and in ELν . The least fixpoint concept BΣ

T1(X)
describes the disjunction of all Σ-concepts that are subsumed by (or that entail) X w.r.t. T1.
Analogously the greatest fixpoint concept FΣ

T1(X) describes the conjunction of all Σ-concepts
that subsume (or that are entailed by) X w.r.t. T1. The use of fixpoint operators enables us to
obtain a finite concept description that is equivalent to an infinite disjunction or conjunction.

Before we can give a formal definition for the concept BΣ
T1(X), we have to introduce the

following auxiliary notion to handle concept names X in the definition of BΣ
T1(X) for which there

exist axioms of the form Z1 u . . . u Zn v Z in a normalised TBox T1 such that T1 |= Z v X.
Intuitively, given a concept name X, we construct a set ConjT1(X) consisting of sets of concept
names which has the property that for every EL-concept D with T1 |= D v X, there exists
a set S = {Y1, . . . , Ym} ∈ ConjT1(X) such that T1 |= D v Yi, for all i ∈ {1, . . . ,m}, follows
without involving any axioms of the form Z1 u . . .uZn v Z. Nested implications between such
axioms also have to be taken into account.

Definition 9 (Sets of Conjuncts). Let T be a normalised EL-TBox and let X ∈ NC. We define
the set ConjT (X) ⊆ 2sig(T )∩NC to be smallest set inductively defined as follows:

• {X} ∈ ConjT (X);

• if S ∈ ConjT (X), Y ∈ S, and Z1 u . . . u Zn v Z ∈ T such that n ≥ 2 and T |= Z v Y ,
then S \ {Y } ∪ {Z1, . . . , Zn} ∈ ConjT (X).
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Example 10. Let T = {A1 u Y v X, A2 uZ v Y, A3 v Z, B1 uB2 v X}. Then ConjT (X) =
{{X}, {Y,A1}, {A1, A2, Z}, {B1, B2}}.

Note that for every concept name X the set ConjT (X) is finite as sig(T ) ∩ NC is finite.

Definition 11 (Σ-Subsumees Representation). Let T be a normalised EL-TBox and let Σ be
a signature. For X ∈ sig(T ) and for a mapping ζ : NC → NV, we define a closed ELU⊥,µ,Σ-

concept BΣ
T (X, ζ) as follows. We set BΣ

T (X, ζ) = > if T |= > v X; otherwise BΣ
T (X, ζ) is

defined recursively in the following way:

• If X ∈ dom(ζ), then BΣ
T (X, ζ) := ζ(X)

• If X 6∈ dom(ζ), we set BΣ
T (X, ζ) := µx.

⊔
S∈ConjT (X)
S={Y1,...,Ym}

(Y ′1 u . . . u Y ′m)

where x is a fresh variable, and Y ′i (1 ≤ i ≤ n) is defined as follows for ζ ′ := ζ ∪{X 7→ x}:

Y ′i =
⊔

T |=BvYi
B∈Σ

B t
⊔

∃r.ZvY ∈T
r∈Σ

T |=YvYi

∃r.BΣ
T (Z, ζ ′)

Finally, we set BΣ
T (X) := BΣ

T (X, ∅).
Intuitively, the construction of BΣ

T (X) starts from X and recursively collects all the concept
names contained in Σ and all the left-hand sides of axioms in T that could be relevant for X
to be entailed by a Σ-concept w.r.t. T . By taking into account all possible axioms that could
lead to a logical entailment, it is guaranteed that we capture every Σ-concept from which X
follows w.r.t. T . Reasoning involving axioms of the form Z1 u . . . u Zn v Z is handled by the
set ConjT (X). Infinite recursion over concepts of the form ∃r.C is avoided by keeping track of
the concept names that have been visited already using the mapping ζ.

Example 12. Let T1 and Σ be defined as in Example 8. Then BΣ
T1(A) = µx.A, BΣ

T1(A′) =

µx.A′, BΣ
T1(B) = µx.B, BΣ

T1(Y1) = µy1.(A t ∃r.µv1.(A
′ u y1)), BΣ

T1(V1) = µv1.(A
′ u µy1.(A t

∃r.v1)), and BΣ
T1(X1) = µx1.(∃s.µy1.(A t ∃r.µv1.(A

′ u y1))), and BΣ
T1(Z1) = µx.⊥.

BΣ
T1(X) represents the disjunction of all Σ-concepts that are subsumed by X w.r.t. T1.

Theorem 13. Let T be a normalised EL-TBox, let Σ be a signature, and let X ∈ sig(T ). Then
for every ELΣ-concept C it holds that T |= C v X iff |= C v BΣ

T (X).

The concept FΣ
T1(X) can be defined in a way such that it represents the conjunction of all

the Σ-concepts that subsume X w.r.t. T1.

Definition 14 (Σ-Subsumers Representation). Let T be a normalised EL-TBox, let Σ be a
signature. For X ∈ sig(T ) and for a mapping η : NC → NV, we define a closed ELν,Σ-concept

FΣ
T (X, η) as follows:

• If X ∈ dom(η), then
FΣ
T (X, η) := η(X)

• If X 6∈ dom(η), we set

FΣ
T (X, η) := νx.

l

T |=XvB
B∈Σ

B u
l

Yv∃r.Z∈T
r∈Σ

T |=XvY

∃r.FΣ
T (Z, η′)
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where x is a fresh variable and η′ := η ∪ {X 7→ x}.
Finally, we set FΣ

T (X) := FΣ
T (X, ∅).

Example 15. Let T1 and Σ be defined as in Example 8. Then FΣ
T1(A) = νx.A, FΣ

T1(B) = νx.B,

FΣ
T1(V1) = νx.>, FΣ

T1(Y1) = νx.>, FΣ
T1(Z1) = νz1.(B u ∃t.z1), and FΣ

T1(X1) = νx1.∃s.νz1.(B u
∃t.z1).

Theorem 16. Let T be a normalised EL-TBox, let Σ be a signature, and let X ∈ sig(T ). Then
for every ELΣ-concept C it holds that T |= X v C iff |= FΣ

T (X) v C.

Given the fixpoint descriptions of the set of subsumees and subsumers of X 6∈ Σ w.r.t. T1, we
can then decide the difference witness status of X by checking whether T2 |= BΣ

T1(X) v FΣ
T1(X).

These subsumptions hold in the context of T2 and they use the concepts BΣ
T1(X) and FΣ

T1(X)
that internalise relevant parts of T1. By handling the differences of Type (i), (ii), and (iv)
in a similar way, we obtain an algorithm for deciding the existence of a Σ-concept difference
between two EL-TBoxes; see [7].

Theorem 17. Let T1, T2 be normalised EL-TBoxes, let Σ be a signature, and let X ∈ sig(T1)\Σ.
Then T2 |= BΣ

T1(X) v FΣ
T1(X) iff for every C,D ∈ ELΣ with T1 |= C v X and T1 |= X v D it

holds that T2 |= C v D.

By internalising the TBox T2 into a µ-calculus formula involving greatest fixpoint construc-
tors, the subsumption T2 |= BΣ

T1(X) v FΣ
T1(X) can be polynomially reduced to µ-calculus

satisfiability, which is known to be ExpTime-complete [4]. However, since in general the con-
cepts BΣ

T1(X) and FΣ
T1(X) can be of exponential size w.r.t. the size of T1, we only obtain a double

exponential bound for the running time of our algorithm (as sketched above) for deciding the
existence of logical differences between EL-TBoxes in this way. This is in contrast to the fact
that the existence of a logical difference between EL-TBoxes can be decided in exponential time
in the size of the input TBoxes and the signature [12]. We will not investigate the existence
of a polynomial reduction of the logical difference problem to µ-calculus satisfiability further.
Instead, we show how to construct (hyper)graph representations of BΣ

T1(X) and FΣ
T1(X) without

having to build the respective fixpoint concepts first. In the following section we will develop
a hypergraph-based technique for the subsumption problem w.r.t. T2 between sets of concepts
representing the subsumees and the subsumers of X w.r.t. T1.

4 Subsumption between Sets of Concepts

In this section we develop a method for deciding the subsumption problem between certain
sets of concepts, which are possibly infinite. More concretely, we consider sets of subsumees or
subsumers of an EL-concept w.r.t. an EL-TBox, or unfoldings of fixpoint concepts.

We recall from the previous section that for two normalised EL-TBoxes T1, T2, and a
signature Σ, a concept name X ∈ sig(T1) \ Σ is not a Type-(iii) witness iff for every C ∈ ELΣ

and for every D ∈ ELΣ with T1 |= C v X and T1 |= X v D it follows that T2 |= C v D.
Our approach now consists in first representing all the ELΣ-concepts C with T1 |= C v X in
a Σ-subsumee hypergraph expT ,Σ← (X) and all the ELΣ-concepts D with T1 |= X v D in a Σ-
subsumer graph expT ,Σ→ (X). More precisely, the unfoldings of expT ,Σ← (X) and expT ,Σ→ (X) (i.e.
the set of ELΣ-concepts represented by expT ,Σ← (X) and expT ,Σ→ (X)) respectively correspond
to the set of ELΣ-concepts that are subsumed by X w.r.t. T1, and the set of ELΣ-concepts
that subsume X w.r.t. T1. Note that expT ,Σ← (X) and expT ,Σ→ (X) respectively stand for the
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least fixpoint concept BΣ
T1(X) and for the greatest fixpoint concept FΣ

T1(X) (as defined in the
previous section). Subsequently, we use these (hyper)graph representations in the context of T2

to check whether every unfolding of expT ,Σ← (X) entails every unfolding of expT ,Σ→ (X) w.r.t. T2.
The remainder of the section is organised as follows. First, we introduce our hypergraph

representation for sets Φ of subsumees in Subsection 4.1, and we show in Subsection 4.2 how it
can be used to decide whether T |= C v E holds for every C ∈ Φ, where E is an EL-concept
and T is a normalised EL-TBox. Alternatively, the method allows us to decide subsumptions
of the form T |= C v E, where C is an ELU⊥,µ-concept. Subsequently, we turn to our graph
representation of sets Ψ of subsumers in Subsection 4.3, and we present its application to
deciding whether T |= E v D holds for every D ∈ Ψ in Subsection 4.4. Moreover, our method
enables us to decide subsumptions of the form T |= E v D, where D an ELν-concept. Finally,
in Subsection 4.5 we combine these two methods to decide whether T |= C v D holds for every
C ∈ Φ and for every D ∈ Ψ, or subsumptions of the form T |= C v D.

4.1 Hypergraph Representation of Subsumee Sets

We now introduce our main hypergraph-based notion for representing sets of concepts.

Definition 18 (Concept Set Hypergraph). A concept set hypergraph is a finite, labelled, di-
rected, hypergraph (V, E ,L,R) with a dedicated set of root nodes R, where

• V is a finite, non-empty set of nodes;

• E ⊆ 2V × V is a set of directed hyperedges;

• L : V ∪ E → 2NC ∪ {>} ∪ 2NR is a labelling function, mapping nodes v ∈ V to subsets
L(v) ⊆ NC ∪ {>}, and mapping edges e ∈ E to non-empty sets of role names L(e) ⊆ NR;

• R ⊆ V.

A concept set hypergraph is admissible iff for every v, v′ ∈ V, L(v) = L(v′) implies v = v′.

We use concept set hypergraphs to represent sets of subsumees or subsumers of fixpoints
concepts, or of EL-concepts w.r.t. a TBox. We now introduce the subsumee unfolding semantics
of concept set hypergraphs.

Definition 19 (EL-Subsumee Unfoldings of Concept Set Hypergraphs). Let G = (V, E ,L,R)
be a concept set hypergraph. First, let Unfold←G ⊆ V × EL be the smallest set closed under the
following conditions:

• if v ∈ V, ϕ = A ∈ L(v) or ϕ = > ∈ L(v), then (v, ϕ) ∈ Unfold←G ;

• if e = ({v1, . . . , vn}, v) ∈ E, r ∈ L(e), (vi, Ci) ∈ Unfold←G for every 1 ≤ i ≤ n, then
(v,∃r.

dn
i=1 Ci) ∈ Unfold←G .

We set Unfold←(G) = {
d
v∈R Cv | (v, Cv) ∈ Unfold←G }.

Intuitively, under the subsumee unfolding semantics, hyperedges represent conjunctions and
the node labels are disjunctively connected.

We now recall from [6] that we can compute dedicated concept set hypergraphs that serve
as a representation of the subsumees of an EL-concept w.r.t. a normalised EL-TBox, or the
subsumees of an ELU⊥,µ-concept. In the following we write S1 ≡ S2, for two sets S1, S2 of
EL-concepts, to denote that for every concept C1 ∈ S1 there exists a concept C2 ∈ S2 with
|= C1 v C2, and that for every D2 ∈ S2 there exists D1 ∈ S1 with |= D2 v D1.

The set of subsumees of an EL-concept D w.r.t. an EL-TBox T , i.e. the set of all EL-
concepts E such that T |= E v D, can be represented in a dedicated concept set hyper-
graph expT←(D) (termed expansion hypergraph of D w.r.t. T in [6]).
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Theorem 20 (See [6]). Let T be a normalised EL-TBox and let D be an EL-concept. Then
there exist a concept set hypergraph expT←(D) = (V, E ,L,R), called subsumee hypergraph of D
w.r.t. T , which can be computed in exponential time in the size of D and T such that

(i) Unfold←(expT←(D)) ≡ {E ∈ EL | T |= E v D }, and

(ii) for every r ∈ NR and for every e, e′ ∈ E with r ∈ L(e) ∩ L(e′), it holds that e = e′.

Property (ii) states that for every node v and for every r ∈ NR there exists at most one
incoming hyperedge in expT←(D) labelled with r. This property will be necessary to establish
Theorem 27 below.

Alternatively, concept set hypergraphs can also represent the set UFEL(C) of unfoldings of
a closed ELU⊥,µ-concept C. We use the fact that C is equivalent to the (potentially) infinite
disjunction over its unfoldings contained in the set UFEL(C), and in particular, every unfolding
in UFEL(C) is a subsumee of C (w.r.t. the empty TBox).

Theorem 21 (See [6]). Let C be a closed ELU⊥,µ-concept. Then there exist a concept set
hypergraph exp←(C) = (V, E ,L,R), called subsumee hypergraph of C, which can be computed
in exponential time in the size of C such that

(i) Unfold←(exp←(C)) ≡ UFEL(C), and

(ii) for every r ∈ NR and for every e, e′ ∈ E with r ∈ L(e) ∩ L(e′), it holds that e = e′.

The subsumee hypergraph exp←(C) of C was called expansion hypergraph for C in [6].
As we are interested in sets of concepts using symbols from a given signature Σ only, we

introduce the following operation on concept set hypergraphs to restrict the set of unfoldings
to concepts formulated in ELΣ.

Definition 22 (Σ-Reduct). Let G = (V, E ,L,R) be a concept set hypergraph and let Σ be a
signature.

We define the Σ-reduct of G, denoted with reductΣ(G), to be the concept set hypergraph
reductΣ(G) := (VΣ, EΣ,LΣ,RΣ), where

VΣ := V,
EΣ := { e ∈ E | (L(e) ∩ Σ) 6= ∅ },
LΣ := { (v, S) | v ∈ V, S = L(v) ∩ (Σ ∪ {>}) }
∪ { (e, S) | e ∈ EΣ, S = L(e) ∩ Σ },

RΣ := R.

Theorem 23. Let T be a normalised EL-TBox and let X ∈ NC be a concept name. Then for
the concept set hypergraph expT ,Σ← (X) := reductΣ(expT←(X)) it holds that

Unfold←(expT ,Σ← (X)) ≡ {E ∈ ELΣ | T |= E v X }.

The concept set hypergraph expT ,Σ← (X) can be computed in exponential time in the size of T
and Σ.

4.2 Subsumee Set Subsumption w.r.t. TBoxes

We proceed with deciding whether T |= C v E holds for every C ∈ Φ, where T is a normalised
EL-TBox, Φ ⊆ EL is a set of foreign subsumees, and E is an EL-concept, by using the technique
developed in [6], which we briefly recall here. Foreign subsumees are either subsumees of an
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exp←(C) expT2←(E)

v2 : A′

v0 :

v1 : A

v′0 :

v′1 : A,X2, Y2

v′2 : A, V2, X2

r

r

s s

r

Figure 1: Purged subsumee hypergraphs for Example 26

EL-concept w.r.t. an EL-TBox, possibly different from E and T , or the unfoldings of an ELU⊥,µ-
concept. Hence, by taking Φ = UFEL(C), it becomes possible to decide subsumptions of the
form T |= C v E for closed ELU⊥,µ-concepts C.

In [6] it was also established that every concept set hypergraph G = (V, E ,L,R) can be
transformed into a purged concept set hypergraph G′ = (V ′, E ′,L′,R′) (by removing superfluous
nodes and hyperedges that do not produce EL-concept unfoldings) such that Unfold←(G) = ∅
iff |V ′| = 1, E ′ = ∅, L′ = {v 7→ ∅} for V ′ = {v}, and R′ = V ′.

Theorem 24 (See [6]). Let G = (V, E ,L,R) be a concept set hypergraph. Then there exists a
concept set hypergraph purge(G) = (V ′, E ′,L′,R′) such that

• Unfold←(purge(G)) ≡ Unfold←(G); and

• if Unfold←(G) = ∅, then |V ′| = 1, E ′ = ∅, L′ = {v 7→ ∅} for V ′ = {v}, R′ = V ′; and

• if Unfold←(G) 6= ∅, then for every v ∈ V ′ it holds that (v, ϕ) ∈ Unfold←G for some ϕ ∈ EL.

Given two purged concept set hypergraphs G1 and G2, we can decide whether for every
C ′ ∈ Unfold←(G1) there exists D′ ∈ Unfold←(G2) with |= C ′ v D′ by trying to construct an
subsumee hypergraph simulation, which is formally defined as follows.

Definition 25 (Subsumee Hypergraph Simulation). Let G1 = (V1, E1,L1,R1) and let G2 =
(V2, E2,L2,R2) be two concept set hypergraphs. We say that G1 can be subsumee simulated
by G2, written sim←(G1,G2), iff there exists a binary relation S ⊆ V1 × V2 which fulfills the
following conditions:

(i) if (v1, v2) ∈ S and > 6∈ L2(v2), then L1(v1) ∪ {>} ⊆ L2(v2);

(ii) if (v1, v2) ∈ S, > 6∈ L2(v2), e1 = (H1, v1) ∈ E1, and r ∈ L1(e1), then there exists
e2 = (H2, v2) ∈ E2 such that r ∈ L2(e2) and for every v′2 ∈ H2 there exists v′1 ∈ H1 with
(v′1, v

′
2) ∈ S; and

(iii) for every v2 ∈ R2 there exists v1 ∈ R1 such that (v1, v2) ∈ S.

S is called a a subsumee hypergraph simulation between G1 and G2.

For a detailed explanation of the simulation conditions we refer the reader to [5, 6, 11].

Example 26. Let T1, T2 and Σ be defined as in Example 8. Additionally, let C = BΣ
T1(X1) =

µx1.(∃s.µy1.(A t ∃r.µv1.(A
′ u y1))) and let E = ∃s.(X2 t Y2). Then T2 |= C v E. The purged

concept set hypergraph exp←(C) for C and the purged concept set hypergraph expT2←(E) for E
w.r.t. T2 are shown in Figure 1. We have that:
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Unfold←(exp←(C)) = {∃s.A,∃s.∃r.(A′ uA),∃s.∃r.(A′ u ∃r.(A′ uA)), . . . },
Unfold←(expT2←(E)) = {∃s.A,∃s.X2,∃s.Y2,∃s.∃r.A, ∃s.∃r.V2,∃s.∃r.X2,∃s.∃r.∃r.A, . . . }.

Moreover, it holds that S = {(v0, v
′
0), (v1, v

′
1), (v1, v

′
2)} is a subsumee hypergraph simulation

between exp←(C) and expT2←(E), i.e. sim←(exp←(C), expT2←(E)).

Theorem 27. Let G1 = (V1, E1,L1,R1) and let G2 = (V2, E2,L2,R2) be two concept set hy-
pergraphs. Then it holds that sim←(purge(G1), purge(G2)) iff for every C ∈ Unfold←(G1) there
exists D ∈ Unfold←(G2) with |= C v D.

We now recall the main result from [6], connecting subsumption with the existence of a
subsumee hypergraph simulation between purged subsumee hypergraphs.

Corollary 28 (See [6]). Let T be a normalised EL-TBox, let C be a closed ELU⊥,µ-concept,
and let E be an EL-concept. Then it holds that:

T |= C v E iff sim←(purge(exp←(C)), purge(expT←(E)))

It can be decided in polynomial time w.r.t. the size of exp←(C) and expT←(E) whether
purge(exp←(C)) can be simulated by purge(expT←(E)). Consequently, the subsumption T |=
C v E can be decided in exponential time in the size of T , C, and E.

4.3 Graph Representations of Subsumer Sets

We now introduce our graph-based representation for sets of EL-concepts that stand for the
subsumers of a concept name w.r.t. a normalised EL-TBox, or of an ELν-concept.

Definition 29 (Concept Set Graph). A concept set graph is a concept set hypergraph (V, E ,L,R)
such that for every (H, v) ∈ E it holds that |H| = 1, |R| = 1, and L(v) ⊆ NC for every v ∈ V.

In the following we use a tuple (V, E ,L, ρ) to denote a concept set graph (V, E ,L,R) with
R = {ρ}. Moreover, for (H, v′) ∈ E with H = {v} we simply write (v, v′) ∈ E . Note that in a
concept set graph > does not occur in node labels.

We now define the subsumer unfolding semantics for concept set graphs. In contrast to
the subsumee unfolding semantics of concept set hypergraphs, under the subsumer unfolding
semantics we view a concept set graph G as a disjunctive normal form representation of a set
of EL-concepts, denoted with Unfold→(G). Concept names in node labels are conjunctively
connected and source nodes in hyperedges are disjunctively connected. However, as hyperedges
in concept set graphs are simple directed edges, any disjunction consists of only one disjunct.

Definition 30 (EL-Subsumer Unfoldings of Concept Set Graphs). Let G = (V, E ,L, ρ) be a
concept set graph. First, let Unfold→G ⊆ V × EL be the smallest set closed under the following
conditions:

• if v ∈ V, then (v,>) ∈ Unfold→G ;

• if v ∈ V, { v′ | (v, v′) ∈ E } = {v′1, . . . , v′m} with m ≥ 0, (v′i, Ci) ∈ Unfold→G for every
1 ≤ i ≤ m, then (v,

d
A∈L(v)A u

dm
i=1

d
r∈L(v,v′i)

∃r.Ci) ∈ Unfold→G .

We set Unfold→(G) = {C | (ρ, C) ∈ Unfold→G }.

Intuitively, the set Unfold→(G) can be seen to represent a (potentially) infinite conjunction
over the concepts contained in it. It holds that Unfold→(G) = {>} iff L(ρ) = ∅ and for all
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(v, v′) ∈ E it holds that v 6= ρ. Note that for our purposes simple directed edges (instead
of complex hyperedges) are sufficient as we do not need disjunctions to represent sets of EL-
subsumers.

Similarly to Subsection 4.1, one can compute a dedicated concept set hypergraph to represent
the set of subsumers of a concept name w.r.t. a normalised EL-TBox.

Definition 31 (Subsumer Graph for a Concept Name w.r.t. a TBox). Let T be a normalised
EL-TBox and let X ∈ (sub(T ) ∩ NC) ∪ {>}. The subsumer graph of X w.r.t. T , denoted with
expT→(X), is the concept set graph (V, E ,L, ρ), where

V := { vϕ | ϕ ∈ (sub(T ) ∩ NC) ∪ {>} },
E := { (vϕ, vY ) | ∃r.Y ∈ sub(T ), T |= ϕ v ∃r.Y },
L := { (vϕ, S) | vϕ ∈ V, S = {Y ∈ sub(T ) ∩ NC | T |= ϕ v Y } }
∪ { (e, S) | e = (vϕ, vY ), S = { r | ∃r.Y ∈ sub(T ), T |= ϕ v ∃r.Y } },

ρ := vX .

Note that in contrast to the subsumee hypergraph expT←(X) of X w.r.t. T , the subsumer
graph expT→(X) of X w.r.t. T can be computed in polynomial time in the size of T .

In the following it will also be convenient to represent a concept set graph G in the form of
a dedicated TBox T (G).

Definition 32 (TBox Encoding of Concept Set Graphs). Let G = (V, E ,L, ρ) be a concept set
graph. We define the subsumee TBox encoding T←(G) and the subsumer TBox encoding T→(G)
of G as follows:

T←(G) := {
l

A∈L(v)

A u
l

e=(v,v′)∈E
r∈L(e)

∃r.Xv′ v Xv | v ∈ V },

T→(G) :=
⋃
v∈V

(
{Xv v A | A ∈ L(v) } ∪ {Xv v ∃r.Xv′ | e = (v, v′) ∈ E , r ∈ L(e) }

)
.

Finally, we set T (G) := T←(G) ∪ T→(G).

We obtain the following properties of subsumer graphs expT→(X) w.r.t. its subsumer unfold-
ings.

Theorem 33. Let T be a normalised EL-TBox and let X ∈ (sub(T )∩NC)∪{>}. Additionally,
let expT ,Σ→ (X) := reductΣ(expT→(X)). Then it holds that:

(i) Unfold→(expT→(X)) ≡ {E ∈ EL | T |= X v E }, and

(ii) Unfold→(expT ,Σ→ (X)) ≡ {E ∈ ELΣ | T |= X v E }.
The concept set graph expT ,Σ→ (X) can be computed in polynomial time in the size of T and Σ.

Similarly to the case of ELU⊥,µ-concepts, given an ELν-concept D, it is possible to construct
a concept set graph exp→(D), called subsumer graph for D, in polynomial time which represents
the potentially infinitely many unfoldings of D.

Theorem 34. Let D be a closed ELν-concept. Then there exists a concept set graph exp→(D)
such that

Unfold→(exp→(D)) ≡ UFEL(D).

The concept set graph exp→(D) can be computed in polynomial time in the size of T and Σ.
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exp→(D) expT2→(E)

v0 :

v1 : B

v′0 :
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Figure 2: Subsumer graphs for Example 36

4.4 Subsumer Set Subsumption w.r.t. TBoxes

The problem whether T |= E v D holds for every D ∈ Ψ, where T is a normalised EL-TBox,
E is an EL-concept, and Ψ ⊆ EL is a set of subsumers, can be characterised in terms of the
existence of a subsumer graph simulation between the concept set graphs representing Ψ and
the subsumers of E w.r.t. T . We employ the simulation notion for left-hand side witnesses
developed in [9]. Similarly, by taking Ψ = UFEL(D), we can decide subsumptions of the form
T |= E v D for closed ELν-concepts D.

Definition 35 (Subsumer Graph Simulation). Let G1 = (V1, E1,L1, ρ1) and G2 = (V2, E2,L2, ρ2)
be two concept set graphs. Moreover, let u1 ∈ V1 and u2 ∈ V2.

We say that u2 subsumer simulates u1, denoted with sim→([G1, u1], [G2, u2]), iff there exists
a relation S ⊆ V1 × V2 such that

(i) if (v1, v2) ∈ S, then L1(v1) ⊆ L2(v2);

(ii) if (v1, v2) ∈ S, e1 = (v1, v
′
1) ∈ E1, and r ∈ L1(e1), then there exists e2 = (v2, v

′
2) ∈ E2 such

that r ∈ L2(e2) and (v′1, v
′
2) ∈ S; and

(iii) (u1, u2) ∈ S.

S is called a a subsumer graph simulation between [G1, u1] and [G2, u2]. We write sim→(G1,G2)
iff sim→([G1, ρ1], [G2, ρ2]) holds.

For a detailed explanation of the simulation conditions we refer the reader again to [5,6,11].

Example 36. Let T1, T2 and Σ be defined as in Example 8. Additionally, let D = FΣ
T1(X1) =

νx1.∃s.νz1.(B u ∃t.z1) and let E = ∃s.(X2 u Z2). Then T2 |= E v D. The subsumer graph
exp→(D) for D and the subsumer graph expT2→(E) for E w.r.t. T2 are shown in Figure 2.

We have that:

Unfold→(exp→(D)) = {>,∃s.>,∃s.(B u ∃t.>),∃s.(B u ∃t.(B u ∃t.>)), . . . },
Unfold→(expT2→(E)) = {>,∃s.>,∃s.(B uX2 u Z2 u (∃t.>) u (∃t.>)),

∃s.(B uX2 u Z2 u (∃t.(W2 u ∃t.>)) u (∃t.>)), . . . }.

Moreover, it holds that S = {(v0, v
′
0), (v1, v

′
1), (v1, v

′
2), (v1, v

′
3)} is a subsumer graph simulation

between exp→(D) and expT2→(E), i.e. sim→(exp→(D), expT2→(E)).

We obtain the following result.
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Theorem 37. Let G1 = (V1, E1,L1, ρ1) and let G2 = (V2, E2,L2, ρ2) be two concept set graphs.
Then it holds that sim→(G1,G2) iff for every C ∈ Unfold→(G1) there exists D ∈ Unfold→(G2)
with |= D v C.

Corollary 38. Let T be a normalised EL-TBox, let E be an EL-concept, and let D be a closed
ELν-concept. Additionally, let T ′ be the normalisation of the TBox T ∪ {XE ≡ E} for a fresh
concept name XE. Then the following two statements are equivalent:

(i) T |= E v D;

(ii) sim→(exp→(D), expT
′

→ (XE)).

The subsumption T |= E v D can be decided in exponential time in the size of T , E, and D.

4.5 Subsumee–Subsumer Set Subsumption w.r.t. TBoxes

We now combine the previous methods for deciding whether T |= C v D holds for every C ∈ Φ
and for every D ∈ Ψ, where T is a normalised EL-TBox, Φ ⊆ EL is a set of subsumees and
Ψ ⊆ EL is a set of subsumers. By setting Φ = UFEL(C) and Ψ = UFEL(D) we obtain a decision
procedure for subsumptions of the form T |= C v D, where C is an ELU⊥,µ-concept and D is
an ELν-concept.

Our procedure for deciding whether all the unfoldings of a subsumee hypergraph GC entail
all the unfoldings of a subsumer graph GD w.r.t. a TBox T is based on the following observation
regarding subsumptions on the concept level. If Unfold→(GD) is finite, it would be sufficient to
build the conjunction FGD :=

d
ϕ∈Unfold→(GD) ϕ and to check whether T |= C v FGD holds for

every C ∈ Unfold←(GC). Hence, using the standard technique of encoding the concept FGD in a
TBox (by adding an axiom of the form Xρ ≡ FGD for a fresh concept name Xρ), or, equivalently,
encoding the graph GD in the TBox T ←GD , we obtain that for every C ∈ Unfold←(GC) and for
every D ∈ Unfold→(GD), the subsumption T |= C v D (†) is equivalent to

T ∪ T←(GD) |= C v Xρ

for every C ∈ Unfold←(GC), where ρ is the root node of GD. In the case where Unfold→(GD) is
finite, the subsumption (†) can thus be decided using the techniques developed in Section 4.2.
If Unfold→(GD) is infinite, it is no longer to possible to construct the conjunction FGD . Our
technique now relies on identifying appropriate concept names Xη,v in T , also called hooks
in T , for every cyclic node v in GD. By adding the hooks in the form of axioms Xη,v v Xv to a
TBox Tη for every cyclic node v ∈ GD we will establish that the subsumption (†) is equivalent
to

T ∪ T←(GD) ∪ Tη |= C v Xρ

for every C ∈ Unfold←(GC), which can then be checked again via the techniques developed in
Section 4.2. In the following we will provide a formal characterisation of the notion of a TBox
hook and of the TBox Tη.

We start with introducing the notion of cyclic nodes in concept set graphs.

Definition 39 (Cyclic Nodes). Let G = (V, E ,L, ρ) be a concept set graph. We set cyclic(G) :=
{ v ∈ V | (v, v) ∈ E+ }, where E+ is the transitive closure of E.

The following theorem will form the basis of our decision procedure for Type-(iii) witnesses.
It establishes that an unfolding D′ of a subsumer graph G subsumes an EL-concept C w.r.t. an
EL-TBox T iff the concept name Xρ corresponding to the root node of G subsumes C w.r.t.
the union of T , the subsumee TBox encoding T (G(D)) of G and the hook TBox Tη. The TBox
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Tη contains axioms of the form ϕ v Xv for every cyclic node v in G, where Xv represents the
encoding of v in T (G(D)) and ϕ ranges over all the concept names in T or ϕ = > such that
[expT→(ϕ), vϕ] subsumer simulates [G, v]. Recall that T (G) = T←(G) ∪ T→(G).

Theorem 40. Let T be a normalised EL-TBox and let G = (V, E ,L, ρ) be a concept set graph.
Then for the mapping η : cyclic(G)→ 2(sub(T )∩NC)∪{>} defined for every v ∈ cyclic(G) as

η(v) := {ϕ ∈ (sub(T ) ∩ NC) ∪ {>} | sim→([G, v], [expT→(ϕ), vϕ]) },

it holds for every C ∈ EL that the following two statements are equivalent:

(i) T |= C v D′ for every D′ ∈ Unfold→(G);

(ii) T ∪ T (G) ∪ Tη |= C v Xρ, where

Tη := {ϕ v Xv | v ∈ cyclic(G), ϕ ∈ η(v) }.

Intuitively, the correctness of the previous theorem follows from the fact that the concept
names Xv corresponding to v ∈ cyclic(G) actually represent greatest fixpoints, but a model
of T (G) interprets every node Xv as an arbitrary fixpoint, i.e. not necessarily as a greatest
fixpoint. The purpose of the TBox is Tη is now to ensure that the considered models interpret
the concepts Xv as fixpoints that are greater (subset-wise) than any compatible fixpoint concept
name present in T . The compatibility of fixpoint concept names in T is established via the
existence of subsumer simulations.

More formally, the direction (i)⇒ (ii) follows by using the characterisation of the subsump-
tion T |= C v D′, for every D′ ∈ Unfold→(G) using a subsumer simulation. The TBox Tη
contains all possible simulation partners for cyclic nodes v in G, and thus a simulation can be
found for every subsumee C ∈ EL. For the direction (ii) ⇒ (i) it suffices to interpret every
concept name Xv ∈ cyclic(G) as its respective greatest fixpoint.

By combining the previous theorem with theorems 20 and 27, we obtain the following main
result.

Corollary 41. Let T be a normalised EL-TBox, let GC be a concept set hypergraph and let GD
be a concept set graph.

Then for the mapping η : cyclic(G)→ 2(sub(T )∩NC)∪{>} defined for every v ∈ cyclic(G) as

η(v) := {ϕ ∈ (sub(T ) ∩ NC) ∪ {>} | sim→([G, v], [expT→(ϕ), vϕ]) },

it holds that the following two statements are equivalent:

(i) T |= C ′ v D′ for every C ′ ∈ Unfold←(GC) and for every D′ ∈ Unfold→(GD);

(ii) Tintp |= C ′ v Xρ for every C ′ ∈ Unfold←(GC);

(iii) sim←(purge(GC), purge(exp
Tintp
← (Xρ)));

where Tintp := T ∪ T (GD) ∪ Tη and Tη := {ϕ v Xv | v ∈ cyclic(G), ϕ ∈ η(v) }.

The equivalence of statements (i) and (ii) follows from Theorem 40, and the equivalence of
statements (ii) and (iii) is entailed by theorems 20 and 27.

Example 42. Let T1, T2, and Σ be defined as in Example 8. Additionally, let C = BΣ
T1(X1) =

µx1.(∃s.µy1.(A t ∃r.µv1.(A
′ u y1))) and let D = FΣ

T1(X1) = νx1.∃s.νz1.(B u ∃t.z1). Finally,
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let GC and GD be defined as in Figures 1 and 2, respectively. Then cyclic(GD) = {v1} and for
η = {v1 7→ {W2, X2, Y2, Z2}}, we obtain Tintp = T2 ∪ T←(GD) ∪ T→(GD) ∪ Tη, where

T←(GD) = {∃s.Xv1 v Xv0 , B u ∃t.Xv1 v Xv1},
T→(GD) = {Xv0 v ∃s.Xv1 , Xv1 v B, Xv1 v ∃t.Xv1},

Tη = {W2 v Xv1 , X2 v Xv1 , Y2 v Xv1 , Z2 v Xv1}.

It holds that Tintp |= C ′ v Xv0 for every C ′ ∈ Unfold(GC), where v0 is the root of GD. Note
that concept set hypergraph GC is already purged (that is purge(GC) = GC, cf. Theorem 24). The

subsumee hypergraph exp
Tintp
← (Xv0) can be constructed as in Theorem 20. It can then be verified

that GC can be subsumee simulated by purge(exp
Tintp
← (Xv0)) (cf. Definition 25).

5 Deciding the Existence of Difference Witnesses

We are now ready to formulate an algorithm for deciding whether a concept name is a Type-(iii)
witness using the techniques developed in the previous section.

Given two normalised EL-TBoxes T1, T2, a signature Σ, and a concept name X 6∈ Σ, our
procedure for deciding whether X is a Type-(iii) witness is now shown in Algorithm 1. The
algorithm operates as follows. First, the concept set hypergraph BΣ is computed by purging the
Σ-reduct of the subsumee hypergraph expT1←(X) for X w.r.t. T1. Then, it is checked whether BΣ

corresponds to⊥ (cf. Theorem 24), in which case X is not a Type-(iii) witness and the algorithm
returns ‘no’. Subsequently, the concept set graph FΣ is computed by purging the Σ-reduct of
the subsumer graph expT1→(X) for X w.r.t. T1. If FΣ is equivalent to > (cf. Definition 30), one
can infer that X is not a Type-(iii) witness and the algorithm returns ‘no’. Otherwise, the
cyclic nodes in FΣ are determined, and after initialising the “fixpoint hook” TBox Tη with ∅,
the algorithm iterates over all the cyclic nodes vi in the concept set graph FΣ. First the hook
TBox Tvi for the node vi is initialised with ∅ before the algorithm iterates over every concept
name ϕ contained in the signature of T2 and over ϕ = >. In each inner iteration the subsumer
graph FT2ϕ of ϕ is first computed before it is checked whether the node xϕ in FT2ϕ can subsumer
simulate the cyclic node vi in FΣ. If a simulation can be found, ϕ is a valid hook for vi in T2

and the axiom ϕ v Xvi is added to Tvi . After all the concept names ϕ ∈ sig(T2) have been
checked, the hooks for the cyclic node vi contained in the TBox Tvi are added to the global
fixpoint hook TBox Tη. Subsequently, after the search for hooks for every cyclic node in FΣ

has been completed, the TBox Tintp is computed by taking the union of T2 with the TBox
encoding T (FΣ) of FΣ and Tη. Next, the concept set hypergraph Gintp is computed by purging
the subsumee hypergraph for Xρ w.r.t. T2. Note that the concept name Xρ represents the root
node of the graph FΣ. If the hypergraph BΣ cannot be backward simulated by Gintp, we can
conclude that X is a Type-(iii) witness and the algorithm returns ‘yes’. Otherwise, it holds
that X is not a Type-(iii) witness and ‘no’ is returned.

We obtain the following theorem which establishes the correctness of Algorithm 1.

Theorem 43. Let T1, T2 be normalised EL-TBoxes, and let X ∈ (sig(T1)∩NC)\Σ be a concept
name. Then Algorithm 1 applied on T1, T2, Σ, and X returns ‘yes’ iff there exist two ELΣ-
concepts C and D such that T1 |= C v X, T1 |= X v D and T2 6|= C v D. Algorithm 1 runs in
exponential time in the size of T1, T2, and Σ.

The correctness of Algorithm 1 follows from Corollary 41.
Regarding computational complexity, we observe that subsumee hypergraphs for an EL-

TBox T and a concept name X can be computed in exponential time in the size of T and Σ,
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Algorithm 1 Deciding Type-(iii) Witnesses

Input: Normalised EL-TBoxes T1 and T2, signature Σ, concept name X ∈ (sig(T1) ∩ NC) \ Σ
Output: ‘yes’ or ‘no’

1: Let BΣ := purge(reductΣ(expT1←(X)))
2: if BΣ ≡ ⊥ then
3: return no
4: end if
5: Let FΣ = (V, E ,L, ρ) := reductΣ(expT1→(X))
6: if FΣ ≡ > then
7: return no
8: end if
9: Let {v1, . . . , v`} := cyclic(FΣ)

10: Let Tη := ∅
11: for i = 1 to ` do
12: Let Tvi := ∅
13: for every ϕ ∈ (sub(T2) ∩ NC) ∪ {>} do
14: Let FT2ϕ := expT2→(ϕ)

15: if not sim→([FΣ, vi], [FT2ϕ , vϕ]) then
16: continue
17: end if
18: Tvi := Tvi ∪ {ϕ v Xvi}
19: end for
20: if Tvi = ∅ then
21: return ‘yes’
22: end if
23: Tη := Tη ∪ Tvi
24: end for
25: Let Tintp := T2 ∪ T (FΣ) ∪ Tη
26: Let Gintp := purge(exp

Tintp
← (Xρ))

27: if not sim←(BΣ,Gintp) then
28: return ‘yes’
29: end if
30: return ‘no’

whereas the subsumer graph for X w.r.t. T can be constructed in polynomial time in the size
of T and Σ. As the computation of the Σ-reduct and as the purging can each be computed in
polynomial time in the size of the input, we obtain that the subsumee hypergraph BΣ can be
computed in exponential time in the size of T1 and Σ. Furthermore, the subsumer graph FΣ is
of polynomial size w.r.t. T1 and Σ, i.e. the number ` of cyclic nodes is polynomial in the size
of T1 and Σ. Consequently, the for-loops will be executed polynomially many times in the size
of T1, T2, and Σ, and Tη is also of polynomial size w.r.t. T1, T2, and Σ. We can infer that the
subsumee hypergraph Gintp can be computed in exponential time in the size of T1, T2, and Σ.
As checking for the existence of simulations can be performed in polynomial time in the size of
the two input graphs, we obtain that in the worst case Algorithm 1 hence runs in exponential
time in the size of T1, T2, and Σ.
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6 Conclusion

We have presented foundations for a hypergraph-based approach for deciding the existence
of a logical difference between general EL-TBoxes T1 and T2 w.r.t. a signature Σ, which can
be reduced to checking for the existence of four types of difference witnesses. In this paper
we focused on Type-(iii) witnesses, i.e. concept names X ∈ sig(T1) \ Σ for which there exists
C ∈ ELΣ and D ∈ ELΣ with T1 |= C v X and T1 |= X v D but T2 6|= C v D. Our procedure
for deciding the existence of Type-(iii) witnesses is based on (hyper)graph representations
of sets of such concepts C and D combined with simulations between such (hyper)graphs to
characterise subsumption. The same technique can be used to decide subsumptions between
least and greatest fixpoint concepts w.r.t. TBoxes.

It will be necessary to evaluate our method on versions of ontologies that are used in practice.
Moreover, in order to minimise the computational effort required to obtain the hypergraph
representation, the sets of subsumees might need to be represented in disjunctive normal form,
contrary to the current conjunctive normal form version from [6].

Finally, there appear to be several ways to continue this line of research. Based on the
notions developed in this paper, one could extend the results to devise algorithms for reasoning
with more general fixpoint concepts. One could also investigate possible applications of our
hypergraph-based approach to the problem of deciding the existence of uniform interpolants of
EL-TBoxes. A uniform interpolant of an EL-TBox T w.r.t. a signature Σ is a TBox T ′ such
that sig(T ′) ⊆ Σ and cDiffΣ(T , T ′) = cDiffΣ(T ′, T ) = ∅.
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