Kalpa Publications in Computing
Volume 14, 2023, Pages 130-132 R‘O\L[\

Proceedings of V XoveTIC Conference. XoveTIC 2022 Computing

Automatic issue generation

Francisco Cedron', Michael Afion-Valera?, Sara Alvarez-Gonzalez!, Carlos
Fernandez-Lozano!, and Adridn Carballal

! Research Center on Information and Communication Technologies
University of A Coruna, 15071 A Corufa, Spain
2 Software Engineering Laboratory, Computer Science Faculty
University of A Corufia, 15071 A Corufia, Spain

Abstract

It is undeniable that computing has settled in the modern world. Many elements have
enabled global digitization and products are being developed faster, largely through the
use of third-party services. However, the systems developed, whether a proprietary or
third party, can have degradation or service outages. Having an automatic system for the
generation of incidents would allow acting as soon as possible on specific problems in the
services and the development of a system that allows this automation is the main objective
of this work.

1 Introduction

Gone are the days when web services were products that could be considered handcrafted, today
the trend is to automate all the elements that can derive from the services and not depend on
human beings and thus avoid errors inherent to the human condition itself.

A vitally important aspect is the creation of an incident generation system. It is true that
today certain incidents can be resolved automatically. However, incidents that cannot be solved
automatically require manual action and for this, it is necessary to have a system that warns of
system crashes or anomalous operations in a system. Thanks to a notification system the time
to resolve a problem can be reduced, which can mean reducing losses due to the shutdown of
a service [4]. An example was the Fastly service outage, which resulted in an estimated loss of
32M $ to Amazon [3].

2 Objective

The objective of this work is to develop a service that allows the monitoring of the services that
a company could have. If any check detects a drop or degradation in any of the services, the
objective will be to carry out the launching of the corresponding incident in an automated way.
This will be done with the help of the Instatus API that allows the publication of incidents on
a status page. Another objective of this work is the application of techniques such as backoff in
monitoring, to perform different checks repeatedly before indicating that a service is down [1].

A. Leitao and L. Ramos (eds.), XoveTIC2022 (Kalpa Publications in Computing, vol. 14), pp. 130-132

Automatic issue generation F. Cedron et al.

3 Results

Finally, a service has been developed that allows checks to be entered into the system (figure
1). The system of checks has finally been realized using a messaging system with RabbitMQ
that allows to have different processes to evaluate the checks periodically and also providing a
horizontal scaling [5, 6]. The operation of the periodic checks is shown in figure 2.

BASIC HEALTHCHECKS

= |D: 62a1ca8i9d61d74ic8d22586
Component: ckmmeOnag163998zvoon3/uawj
Healthcheck name: Haalth check contra la app de test (82 POST)
URL: https://test manon.rnasa-imedir.com/e?
Method: POST
Status: 201
Incident name: Incidencia conira la app de test (2 POST)
Backoff: false

ID: 62a1cc0aldde 1d/4fcBd22587

Component: ckmme0Onag163938zvooo3Tuaw]

Healthcheck name: Health check contra la app de test (et GET)
URL: https://test manon.rnasa-imedir.com/et

Method: GET

Status: 201

Incident name: Incidencia contra la app de test (e2 GET)
Backoff: true

Figure 1: Example of incidents created in the application.

was active?

Set healthcheck send issue
unactive notification
Y
CEHD(_
A

Health
check
fails?

Retrieve all
health checks

Process the
health check

Generate messsages to Read the message
process healthchecks 1o do the health check

Set healthcheck
active

End

Figure 2: Flowchart of the periodic realizations. The blue elements are generated from a cron
process while the green elements are executed by different workers, allowing the monitoring to
be horizontally scalable.

131

Automatic issue generation F. Cedron et al.

4 Conclusions

The automatic incident monitoring website has been developed and allows multiple checks to
be performed automatically on a regular basis. In addition, the code can be deployed on any
company’s private network and perform checks on points that are not available on the Internet,
something that is not possible with commercial status pages such as Atlassian StatusPage [2].

5 Acknowledgments

e Financial support from the Xunta de Galicia and the European Union (European Social
Fund -ESF), is gratefully acknowledged.

e CITIC, as Research Center accredited by Galician University System, is funded by “Con-
selleria de Cultura, Educacién e Universidades from Xunta de Galicia, Spain”, sup-
ported in an 80% through ERDF Funds, Spain, ERDF Operational Programme Galicia
2014-2020, and the remaining 20% by “Secretaria Xeral de Universidades, Spain” (Grant
ED431G 2019/01).

e We are particularly grateful to CESGA (Galician Supercomputing Centre) for providing
access to their infrastructure.

References

[1] Amazon. Error retries and exponential backoff in aws. https://docs.aws.amazon.com/general/
latest/gr/api-retries.html, last viewed September 2022.

[2] Atlassian. Statuspage. https://www.atlassian.com/software/statuspage, last viewed September
2022.

[3] Status Cacke. What happened to fastly and why did so many websites experience downtime?
https://www.statuscake.com/blog/fastly-global-outage/, last viewed September 2021.

[4] Stephen Elliot. Devops and the cost of downtime: Fortune 1000 best practice metrics quantified.
International Data Corporation (IDC), 2014.

[5] Xian Jun Hong, Hyun Sik Yang, and Young Han Kim. Performance analysis of restful api and
rabbitmq for microservice web application. In 2018 International Conference on Information and
Communication Technology Convergence (ICTC), pages 257-259. IEEE, 2018.

[6] Catherine Kell. Weighing the scales: recontextualization as horizontal scaling. Globalization and

Language in Contact: Scale, Migration and Communicative Practices. London: Continuum, pages
252-274, 2009.

132

https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://www.atlassian.com/software/statuspage
https://www.statuscake.com/blog/fastly-global-outage/

	1 Introduction
	2 Objective
	3 Results
	4 Conclusions
	5 Acknowledgments
	References

