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Abstract

Watchlist (also hint list) is a technique that allows lemmas from related proofs to guide
a saturation-style proof search for a new conjecture. ProofWatch is a recent watchlist-style
method that loads many previous proofs inside the ATP, maintains their completion ratios
during the proof search and focuses the search by following the most completed proofs. In
this work, we start to use the dynamically changing vector of proof completion ratios as ad-
ditional information about the saturation-style proof state for statistical machine learning
methods that evaluate the generated clauses. In particular, we add the proof completion
vectors to ENIGMA (efficient learning-based inference guiding machine) and evaluate the
new method on the MPTP Challenge benchmark, showing moderate improvement in E’s
performance over ProofWatch and ENIGMA.

1 Introduction

This work proposes and develops a new learning-based proof guidance – ENIGMAWatch – for
saturation-style first-order theorem provers. It is based on two previous guiding methods im-
plemented for the E [13] ATP system: ProofWatch [4] and ENIGMA [7, 8]. Both ProofWatch
and ENIGMA enable E to use related proofs for guiding the proof search for a new conjec-
ture. ProofWatch is based on the hints (watchlist) mechanism. It uses standard symbolic
subsumption to compute the completion ratios of related proofs, and focuses the current proof
search towards the most completed ones. ENIGMA uses statistical machine learning from
many related proofs to estimate the relevance of the generated clauses for the current conjec-
ture. ENIGMAWatch combines the two approaches by using the completion ratios of the related
proofs as an additional characterization of the current proof state, which is used together with
the conjecture for ENIGMA-style machine learning of clause relevance.

ENIGMAWatch is implemented for E and evaluated here on the MPTP Challenge1 [14, 15]
benchmark. This is a set of 252 first-order problems extracted from the Mizar Mathematical
Library (MML) [5]. This set of lemmas is used in Mizar to prove the Bolzano-Weierstrass
theorem.2
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The rest of the paper is organized as follows. Sections 2 and 3 provide the background on
ENIGMA and ProofWatch. Section 4 explains how ENIGMA and ProofWatch are combined,
and Section 5 evaluates ENIGMAWatch on the MPTP Challenge benchmark.

2 Saturation-based ATP and ENIGMA

Saturation-style first-order theorem provers are based on the given-clause algorithm. This
algorithm splits the proof state into two subsets of clauses, the initially empty processed clauses
P and the unprocessed clauses U . In each step the algorithm picks one unprocessed clause g
(the given clause), puts g into P , and performs all possible inferences between g and the clauses
in P . The newly generated clauses are, if not trivially discarded, put into U . This process is
repeated until U is empty or a proof (contradiction) has been found. The core choice point is
the selection of the next given clause.

ENIGMA [7, 8] stands for Efficient learN ing-based I nference Guiding MAchine. It steers
the selection of the given clauses in saturation-based ATPs like E. ENIGMA is based on the
simple but fast logistic regression algorithm [2] effectively implemented by the LIBLINEAR
open source library [3]. In order to employ logistic regression, first-order clauses need to be
translated to fixed-length numeric feature vectors. The first version of ENIGMA [7] uses (top-
down-)oriented term-tree walks of length 3 as features. For example, a unit clause “P (f(a, b))”
contains only features “(P, f, a)” and “(P, f, b)” (see [7, Sec. 3.2] for details). Features are
enumerated and a clause C is translated to the feature vector ϕC whose i-th member counts
the number of occurrences of the i-th feature in clause C.

In order to train an ENIGMA predictor E , all the given clauses C from a set of previous
successful proof searches are collected. The given clauses used in the proofs are classified as
positive (C+ ⊆ C) and the remaining given clauses as negative (C− ⊆ C). The clause sets
(C+, C−) are turned into feature vector sets (Φ+,Φ−) using a fixed feature enumeration π.
Then a LIBLINEAR classifier w (a weight vector) is trained on the classification (Φ+,Φ−),
classifying each clause as useful or un-useful. The classifier w and enumeration π produce a
predictor E = (w, π) which is used to guide next proof searches in combination with other E
heuristics.

The above ENIGMA predictors recommend clauses independently of the conjecture being
currently proved. The second version of ENIGMA [8] overcomes this weakness by adding the
conjecture context. Instead of representing just the clause C using the vector ϕC of length n
(where n is the number of different features appearing in the training data), we use a vector
(ϕC , ϕG) of length 2n where ϕG contains the features of the conjecture G. For a training clause
C, G corresponds to the conjecture of the proof search where C was selected as a given clause.
When classifying a clause C during a proof search, G corresponds to the conjecture currently
being proved. In this way, ENIGMA provides conjecture-specific predictions. The enhanced
ENIGMA additionally supports more features, like horizontal features and static features (see
[8, Sec. 2] for more details).

Even with the above conjecture context, ENIGMA predictors still recommend clauses inde-
pendently on the current state of the proof search. In this work we add the proof state context,
that is, instead of representing the choice of a clause C by the vector (ϕC , ϕG) we represent
the choice of the clause in the current proof state by the vector (ϕC , ϕG, ϕΠ) where ϕΠ is a
proof-state vector which describes the specific proof search state where C was selected. The
next sections describe how we construct the proof vectors.
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3 ProofWatch

3.1 Standard Watchlist Guidance

The watchlist (hint list) mechanism steers given clause selection via symbolic matching between
generated clauses and clauses on a watchlist W . This technique has been developed and used
extensively by Veroff [16] for the AIM project [9] with Prover9 [12] for obtaining long and
advanced proofs of open conjectures. The standard watchlist mechanism as originally imple-
mented in E, Otter [11], and Prover9 [12] uses only one watchlist W . In E, the watchlist
mechanism uses a priority function PreferWatchlist that gives higher priority to clauses that
match the watchlist W .3 Clauses with higher priority are selected as given before clauses with
lower priority4. When clauses from previous proofs are put on W , E thus prefers to follow steps
from the previous proofs whenever it can.

3.2 ProofWatch

ProofWatch [4, Sec. 5] extends standard watchlist guidance by allowing for multiple watchlists
W1,. . .,Wn, e.g., one corresponding to each related proof used. We say that a generated clause
C matches a watchlist W if C subsumes a clause CW ∈W (this implies that C logically entails
CW ). During a proof search, clauses from some watchlist might get matched more often than
clauses from others. The more clauses are matched from a watchlist Wi, the more the current
proof search resembles Wi, and hence Wi might be more relevant for this proof search. The
idea of ProofWatch is to prioritize clauses that match more relevant watchlists (proofs).

Watchlist relevance is dynamically computed. We define progress(W ) to be the count of
clauses CW ∈ W that have been matched in the proof search thus far. The completion ratio,
progress(W )
|W | , measures how much of the watchlist W has been matched. The dynamic relevance

of each generated clause C is defined as the maximum completion ratio over all the watchlists
Wi that C matches:5

relevance(C) = max
W∈{Wi:CvWi}

(progress(W )

|W |

)
The higher the dynamic relevance, the higher priority a clause matching that watchlist is

given.

4 ENIGMAWatch: ProofWatch meets ENIGMA

The watchlist completion ratios at each step in E’s proof search can be taken as a vectorial rep-
resentation of the proof state, and used as input to ENIGMA. This is how the proof-state vector
ϕΠ is constructed. The general motivation for this approach is to come up with an evolving
characterization of the saturation-style proof state, preferably in a vectorial form suitable for
machine learning tools. In general, this could be, e.g., a vector of more abstract similarities of
the current proof state to other proofs measured in various (possibly approximate) ways. The
ProofWatch based proof-state vector is thus the first reasonable implementation of this general
idea.

3See [4, Sec. 4 and 6] for details.
4Numerically the lower the priority, the better. 0 is the best priority.
5C vWi stands for C subsuming a clause from Wi

17



ProofWatch Meets ENIGMA Goertzel, Jakub̊uv, Urban

In particular, the positive C+ and negative C− given clauses are output along with ϕΠ, the
proof-state vector at the time of their selection, and used in ENIGMA training.

Table 1 shows a sample proof-state vector based on 32 related proofs6 for the Mizar theorem
YELLOW 5:367 at the end of the proof search. Note that some related proofs, such as #2,
were almost fully matched, while others, such as #7 were mostly not matched in the proof
search.

0 0.438 42/96 1 0.727 56/77 2 0.865 45/52 3 0.360 9/25
4 0.750 51/68 5 0.259 7/27 6 0.805 62/77 7 0.302 73/242
8 0.652 15/23 9 0.286 8/28 10 0.259 7/27 11 0.338 24/71
12 0.680 17/25 13 0.509 27/53 14 0.357 10/28 15 0.568 25/44
16 0.703 52/74 17 0.029 8/272 18 0.379 33/87 19 0.424 14/33
20 0.471 16/34 21 0.323 20/62 22 0.333 7/21 23 0.520 26/50
24 0.524 22/42 25 0.523 45/86 26 0.462 6/13 27 0.370 20/54
28 0.411 30/73 29 0.364 20/55 30 0.571 16/28 31 0.357 10/28

Table 1: Example of the proof-state vector for the (serially numbered) 32 proofs loaded to guide
the proof of YELLOW 5:36. The three columns are the watchlist i, the completion ratio of i, and
progress(Wi)/|Wi|.

5 Evaluation on the MPTP Challenge Benchmark

5.1 MPTP Challenge

The Mizar Mathematical Library (MML) contains over 1000 articles on diverse topics. The
MPTP Challenge was chosen as an initial benchmark because it covers 33 articles, is of man-
ageable size, and focuses on a single problem. Thus the proof-state vector is hypothesized to be
meaningful without need for curation. The problems range from easy to hard, and the challenge
is still unsolved.8

In the bushy division used here, each problem’s axioms are precisely the ones needed in the
human proofs in the MML, thus the premise selection [1] task does not need to be done by the
ATP. In 2007, 82% of the 252 bushy problems were solved by 14 ATP systems. Presently we
ran Vampire [10] version 4.0, the state of the art theorem prover that performed best on the
challenge, for 300 seconds per problem and solved 87% (220/252).

5.2 Results

The experiments are conducted using as the baseline 10 strategies that were previously evolved
to perform well as an ensemble on the Mizar problems [6].9 These strategies outperform E’s
auto-schedule strategy [6]. All benchmarks are run on the same hardware10, with the same
memory limits, and using E prover version 2.111.

6The proofs were chosen via k-NN. See [4, Sec. 6.1] for details.
7http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/yellow_5#T36
8The TPTP version of the Bolzano-Weierstrass theorem and its MML proof was however cross-verified [15].
9We care about the problems proven by the union of 10 strategies than the performance of any individual

strategy.
10Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz with 256G RAM.
11Our version of E can be found at https://github.com/ai4reason/eprover/tree/devel.
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We conduct three benchmarks to see how many more MPTP Challenge problems each
method enables E to solve. We first run the baseline strategies, then ProofWatch12 and
ENIGMA using those results. For ENIGMAWatch, a second run of the baseline strategies
while recording the proof-state vector ϕΠ is needed before training the ENIGMA models.

The first two benchmarks run E for 1s and 30s per problem and strategy. As ProofWatch
and ENIGMA can slow E down, we run one benchmark using abstract time instead of CPU
time. Abstract time is measured by given-clause loops. T15+C40000 means that each problem
is run until 40000 given clauses are processed or 15s passes.13

Figure 1: The absolute number of problems solved by each method. In 1s the baseline strategies
prove 184 and ENIGMAWatch proves 186. With T15 + C40000 the baselines prove 195 and
ENIGMAWatch proves 205. In 30s the baselines prove 202 and ENIGMAWatch proves 209.

ENIGMAWatch performs best in all of the benchmarks in Figure 1; however the difference
in problems proved is small. As anticipated, the difference is most distinct when using abstract
time rather than CPU time.

A performance metric in addition to the number of problems proven is how many given-
clause loops E takes to find the proof.14 This allows given-clause selection strategies to be
compared on problems solved.

Figure 2 shows the average number of processed clauses used to find the proof on the
T15 + C40000 benchmark. ProofWatch cuts the abstract proof-search time by about 75%,
while ENIGMA and ENIGMAWatch do significantly better. The ENIGMA-based methods
likely have superior efficiency because they provide guidance for each generated clause, whereas
ProofWatch only provides guidance when a clause subsumes a watchlist clause. This shows
that with proper guidance, E can find proofs much faster. In scenarios where many similar
proofs have to be done, this seems useful. The MPTP Challenge is too small to use a standard
train/test split15, so we so far only measure the number of problems additionally proved and

12ProofWatch is run with a static watchlist.
13The baseline strategies often process this many clauses in 5− 10s.
14Which is best measured by looking at non-trivial processed clauses, as E has heuristics for labeling clauses

trivial, and checks to see if they are subsumed by another processed clause.
15One could do leave-one-out testing to test this on this 252 problem dataset.
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the proof shortening in terms of the abstract time.
Figure 3 examines how much more efficient ENIGMAWatch is on each problem by taking

the average of the ratios:

clauses by ENIGMAWatch on problem p

clauses by Baseline on problem p

The same trend is present as with average clauses, but the outliers seem to stand out less. It’s
interesting that with one strategy, mzr06, ENIGMA uses more processed clauses per problem
than the baseline. However mzr06 only proved 17 problems, so ENIGMA did not have much
training data at its disposal.

Figure 2: The average processed clauses used to find proofs on the T15 + C40000 benchmark.

6 MPTP2078: The Next Frontier

The MPTP2078 benchmark is similar to the MPTP Challenge however all theorems from the 33
Mizar articles are included, growing the number of problems to 2078. In previous work [4], we
discovered that ProofWatch becomes slow when there are 10, 000 clauses on the watchlist. The
inference speed is good enough with up to 128 proofs on the watchlist.16 The baseline ensemble
proves 1461 problems. Thus to use ENIGMAWatch, a small subset of the proofs available must
be chosen as the proof-state vector.

We have tried to use k-medoids based on ENIGMA-style features of the problems and their
initial clause sets for k ∈ {4, 8, 16, 32, 64} to select the proof-state vectors; however this is not yet
effective. The most effective watchlist curation method in ProofWatch is to use k-NN based on

16Thus the small MPTP Challenge dataset already uses watchlists near the limits of ProofWatch’s capabilities.
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Figure 3: The average ratio of each method over the Baseline, which is a constant bar at 1.

ENIGMA-style features to suggest proofs for each problem [4]. ENIGMAWatch needs to have a
consistent proof-state vector, so one idea is to take the union of k-NN suggested proofs and set
the unused proofs’ watchlists to zero (the empty clause) on a problem-specific basis. Another
option is to have faster algorithms for matching (based on better indexing), for approximate
matching or in general for estimating how much a clause belongs to a related proof. The latter
ones could again be based on learning such approximate concepts from a large body of proofs.

7 Conclusion

The first experiment with ENIGMAWatch on the MPTP Challenge is encouraging. The perfor-
mance is better than both ProofWatch and ENIGMA, especially with regard to the number of
processed clauses needed to find a proof. This indicates that combining symbolic and statistical
machine learning in this way can be fruitful.

However additional work is needed to find out how to best leverage the potential of the
ENIGMAWatch method. ProofWatch works best when the watchlists are targeted on the
specific problem. ENIGMA, using logistic regression, works best when given lots of data to learn
from. Reconciling the two and applying ENIGMAWatch to larger datasets presents interesting
research challenges.
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