
An SMT-LIB Format for Sequences and Regular

Expressions

(Extended Abstract)

Nikolaj Bjørner1, Vijay Ganesh2, Raphaël Michel3 and Margus Veanes4

1 Microsoft Research
2 MIT

3 University of Namur
4 Microsoft Research

Abstract

Strings are ubiquitous in software. Tools for verification and testing of software rely in
various degrees on reasoning about strings. Web applications are particularly important in
this context since they tend to be string-heavy and have large number security errors at-
tributable to improper string sanitzation and manipulations. In recent years, many string
solvers have been implemented to address the analysis needs of verification, testing and
security tools aimed at string-heavy applications. These solvers support a basic representa-
tion of strings, functions such as concatenation, extraction, and predicates such as equality
and membership in regular expressions. However, the syntax and semantics supported
by the current crop of string solvers are mutually incompatible. Hence, there is an acute
need for a standardized theory of strings (i.e., SMT-LIBization of a theory of strings) that
supports a core set of functions, predicates and string representations.

This paper presents a proposal for exactly such a standardization effort, i.e., an SMT-
LIBization of strings and regular expressions. It introduces a theory of sequences general-
izing strings, and builds a theory of regular expressions on top of sequences. The proposed
logic QF BVRE is designed to capture a common substrate among existing tools for string
constraint solving.

1 Introduction

This paper is a design proposal for an SMT-LIB format for a theory of strings and regular
expressions. The aim is to develop a set of core operations capturing the needs of verification,
analysis, security and testing applications that use string constraints. The standardized theory
should be rich enough to support a variety of existing and as-yet-unknown new applications.
More complex functions/predicates should be easily definable in it. On the other hand, the
theory should be as minimal as possible in order for the corresponding solvers to be relatively
easy to write and maintain.

Strings can be viewed as monoids (sequences) where the main operations are creating the
empty string, the singleton string and concatentation of strings. Unification algorithms for
strings have been subject to extensive theoretical advances over several decades. Modern pro-
gramming environments support libraries that contain a large set of string operations. Ap-
plications arising from programming analysis tools use the additional vocabulary available in
libraries. A realistic interchange format should therefore support operations that are encoun-
tered in applications.

The current crop of string solvers [9, 12, 3] have incompatible syntax and semantics. Hence,
the objective of creating an SMT-LIB format for string and regular expression constraints is to
identify a uniform format that can be targeted by applications and consumed by solvers.

P. Fontaine, A. Goel (eds.), SMT 2012 (EPiC Series, vol. 20), pp. 77–87 77

SMT-LIB Sequences and Regular Expressions N. Bjørner, V. Ganesh, R. Michel, M. Veanes

The paper is organized as follows. Section 2 introduces the theory Seq of sequences. The
theory RegEx of regular expressions in Section 3 is based on Seq. The theories admit sequences
and regular expressions over any type of finite alphabet. The characters in the alphabet are
defined over the theory of bit-vectors (Section 4). Section 5 surveys the state of string-solving
tools. Section 6 describes benchmark sets made available for QF BVRE and a prototype. We
provide a summary in Section 7.

2 Seq: A Theory of Sequences

In the following, we develop Seq as a theory of sequences. It has a sort constructor Seq that
takes the sort of the alphabet as argument.

2.1 The Signature of Seq

(par (A) (seq-unit (A) (Seq A))) ; String consisting of a single character

(par (A) (seq-empty (Seq A))) ; The empty string

(par (A) (seq-concat ((Seq A) (Seq A)) (Seq A))) ; String concatentation

(par (A) (seq-cons (A (Seq A)) (Seq A))) ; pre-pend a character to a seq

(par (A) (seq-rev-cons ((Seq A) A) (Seq A))) ; post-pend a characeter

(par (A) (seq-head ((Seq A)) A)) ; retrieve first character

(par (A) (seq-tail ((Seq A)) (Seq A))) ; retrieve tail of seq

(par (A) (seq-last ((Seq A)) A)) ; retrieve last character

(par (A) (seq-first ((Seq A)) (Seq A))) ; retrieve all but the last char

(par (A) (seq-prefix-of ((Seq A) (Seq A)) Bool)) ; test for seq prefix

(par (A) (seq-suffix-of ((Seq A) (Seq A)) Bool)) ; test for postfix

(par (A) (seq-subseq-of ((Seq A) (Seq A)) Bool)) ; sub-sequence test

(par (A) (seq-extract ((Seq A) Num Num) (Seq A))) ; extract sub-sequence

parametric in Num

(par (A) (seq-nth ((Seq A) Num) A)) ; extract n’th character

parametric in Num

(par (A) (seq-length ((Seq A)) Int) ; retrieve length of sequence

The sort Num can be either an integer or a bit-vector. The logic QF BVRE instantiates the
sort Num to bit-vectors, and not to an integer.

2.2 Semantics Seq

The constant seq-empty and function seq-concat satisfy the axioms for monoids. That is,
seq-empty is an identity of seq-concat and seq-concat is associative.

(seq-concat seq-empty x) = (seq-concat x seq-empty) = x

(seq-concat x (seq-concat y z)) = (seq-concat (seq-concat x y) z)

Furthermore, Seq is the theory all of whose models are an expansion to the free monoid
generated by seq-unit and seq-empty.

78

SMT-LIB Sequences and Regular Expressions N. Bjørner, V. Ganesh, R. Michel, M. Veanes

2.2.1 Derived operations

All other functions (except extraction and lengths) are derived. They satisfy the axioms:

(seq-cons x y) = (seq-concat (seq-unit x) y)

(seq-rev-cons y x) = (seq-concat y (seq-unit x))

(seq-head (seq-cons x y)) = x

(seq-tail (seq-cons x y)) = y

(seq-last (seq-rev-cons x y)) = y

(seq-first (seq-rev-cons x y)) = x

(seq-prefix-of x y)⇔ ∃z . (seq-concat x z) = y

(seq-suffix-of x y)⇔ ∃z . (seq-concat z x) = y

(seq-subseq-of x y)⇔ ∃z, u . (seq-concat u x z) = y

Observe that the value of (seq-head seq-empty) is undetermined. Similarly for seq-tail,
seq-first and seq-last. Their meaning is under-specified. Thus, the theory Seq admits all
interpretations that satisfy the free monoid properties and the axioms above.

2.2.2 Extraction and lengths

It remains to provide semantics for sequence extraction and length functions. We will here
describe these informally.

(seq-length s) The length of sequence s. Seq satisfies the monoid axioms and is freely
generated by unit and concatenation. So every sequence is a finite concatenation of units
(i.e., characters in the alphabet). The length of a sequence is the number of units in the
concatenation.

(seq-extract seq lo hi) produces the sub-sequence of characters between lo and hi-1. If
the length of seq is less than lo, then the produced subsequence is empty. If the bit-
vector hi is smaller than lo the result is, once again, the empty sequence. If the length of
seq is larger than lo, but less than hi, then the result is truncated to the length of seq.
In other words, seq-extract satisfies the equation (The length function is abbreviated
as l(s)):

(seq-extract s lo hi) =

seq-empty if l(s) < lo

seq-empty if hi < lo

seq-empty if hi < 0

(seq-extract (seq-tail s) (lo− 1) (hi− 1)) if 0 < lo

(seq-extract (seq-first s) (0) (m)) if 0 < l(s)− hi+ 1

s otherwise

(seq-nth s n) Extract the n’th character of sequence s. Indexing starts at 0, so for example
is c (where Num ranges over Int).

79

SMT-LIB Sequences and Regular Expressions N. Bjørner, V. Ganesh, R. Michel, M. Veanes

(seq-nth (seq-cons c s) 0)

3 RegEx: A Theory of Regular Expressions

We summarize a theory of regular expressions over sequences. It includes the usual operations
over regular expressions, but also a few operations that we found useful from applications when
modeling recognizers of regular expressions. It has a sort constructor RegEx that takes a sort
of the alphabet as argument.

3.1 The Signature of RegEx

(par (A) (re-empty-set () (RegEx A))) ; Empty set

(par (A) (re-full-set () (RegEx A))) ; Univeral set

(par (A) (re-concat ((RegEx A) (RegEx A)) (RegEx A))) ; Concatenation

(par (A) (re-of-seq ((Seq A)) (RegEx A))) ; Regular expression of sequence

(par (A) (re-empty-seq () (RegEx A))) ; same as (re-of-seq seq-empty)

(par (A) (re-star ((RegEx A)) (RegEx A))) ; Kleene star

(par (A) ((_ re-loop i j) ((RegEx A)) (RegEx A))) ; Bounded star, i,j >= 0

(par (A) (re-plus ((RegEx A)) (RegEx A))) ; Kleene plus

(par (A) (re-option ((RegEx A)) (RegEx A))) ; Option regular expression

(par (A) (re-range (A A) (RegEx A))) ; Character range

(par (A) (re-union ((RegEx A) (RegEx A)) (RegEx A))) ; Union

(par (A) (re-difference ((RegEx A) (RegEx A)) (RegEx A))) ; Difference

(par (A) (re-intersect ((RegEx A) (RegEx A)) (RegEx A))) ; Intersection

(par (A) (re-complement ((RegEx A)) (RegEx A))) ; Complement language

(par (A) (re-of-pred ((Array A Bool)) (RegEx A))) ; Range of predicate

(par (A) (re-member ((Seq A) (RegEx A)) Bool)) ; Membership test

Note the following. The function re-range is defined modulo an ordering over the character
sort. The ordering is bound in the logic. For example, in the QF BVRE logic, the corresponding
ordering is unsigned bit-vector comparison bvule. While re-range could be defined using
re-of-pred, we include it because it is pervasively used in regular expressions. The function
re-of-pred takes an array as argument. The array encodes a predicate. No other features of
arrays are used, and the intent is that benchmarks that use re-of-pred also include axioms
that define the values of the arrays on all indices. For example we can constrain p using an
axiom of the form

(assert (forall ((i (_ BitVec 8))) (iff (select p i) (bvule #0A i))))

3.2 Semantics of RegEx

Regular expressions denote sets of sequences. Assuming a denotation [[s]] for sequence expres-
sions, we can define a denotation function of regular expressions:

80

SMT-LIB Sequences and Regular Expressions N. Bjørner, V. Ganesh, R. Michel, M. Veanes

[[re-empty-set]] = ∅
[[re-full-set]] = {s | s is a sequence}

[[(re-concat x y)]] = {s · t | s ∈ [[x]], t ∈ [[y]]}
[[(re-of-seq s)]] = {[[s]]}
[[re-empty-seq]] = {[[seq-empty]]}

[[(re-star x)]] = [[x]]∗ =

ω⋃
i=0

[[x]]i

[[(re-plus x)]] = [[x]]+ =

ω⋃
i=1

[[x]]i

[[(re-option x)]] = [[x]] ∪ {[[seq-empty]]}

[[((re-loop l u) x)]] =

u⋃
i=l

[[x]]i

[[(re-union x y)]] = [[x]] ∪ [[y]]

[[(re-difference x y)]] = [[x]] \ [[y]]

[[(re-intersect x y)]] = [[x]] ∩ [[y]]

[[(re-complement x)]] = [[x]]

[[(re-range a z)]] = {[[(seq-unit x)]] | a ≤ x ≤ z}
[[re-of-pred p]] = {[[(seq-unit x)]] | p[x]}

[[(re-member s x)]] = [[s]] ∈ [[x]]

3.3 Anchors

Most regular expression libraries include anchors. They are usually identified using regular
expression constants ^ (match the beginning of the string) and $ (match the end of a string).
We were originally inclined to include operators corresponding these constants. In the end,
we opted to not include anchors as part of the core. The reasons were that it is relatively
straightforward to convert regular expressions with anchor semantics into regular expressions
without anchor semantics. The conversion increases the size of the regular expression at most
linearly, but in practice much less. If we were to include anchors, the semantics of regular
expression containment would also have to take anchors into account. The denotation of regular
expressions would then be context dependent and not as straightforward.

We embed regular expressions with anchor semantics into regular expressions with “regular”
semantics using the funnction complete. It takes three regular expressions as arguments, and
it is used to convert the regular expression e with anchors by calling it with the arguments
complete(e,>,>). Note that the symbol > corresponds to re-full-set, and ε corresponds to
re-empty-set.

81

SMT-LIB Sequences and Regular Expressions N. Bjørner, V. Ganesh, R. Michel, M. Veanes

complete(string , e1, e2) = e1 · string · e2

complete(x · y,>,>) = complete(x,>, ε) complete(y, ε,>)

complete(x · y,>, ε) = complete(x,>, ε) y
complete(x · y, ε,>) = x complete(y, ε,>)

complete($, e1, e2) = ε

complete(^, e1, e2) = ε

complete(x+ y, e1, e2) = complete(x, e1, e2) + complete(y, e1, e2)

We will not define complete for Kleene star, complement or difference. Such regular expres-
sions are normally considered malformed and are rejected by regular expression tools.

4 The logic QF BVRE

The logic QF BVRE uses the theory of sequences and regular expressions. It includes the SMT-
LIB theory of bit-vectors as well. Formulas are subject to the following constraints:

• Sequences and regular expressions are instantiated to bit-vectors.

• The sort Num used for extraction and indexing is a bit-vector.

• re-range assumes the comparison predicate bvule.

• Length functions can only occur in comparisons with other lengths or numerals obtained
from bit-vectors. So while the range of seq-length is Int, it is only used in relative
comparisons or in comparisons with a number over a bounded range. In other words, we
admit the following comparisons (where n is an integer constant):

({<, <=, =, >=, >} (seq-length x) (seq-length y))

({<, <=, =, >=, >} (seq-length x) n)

To maintain decidability, we also require that if a benchmark contains (seq-length x)

it also contains an assertion of the form (assert (<= (seq-length x) n)).

• The sequence operations seq-prefix-of, seq-suffix-of and seq-subseq-of are ex-
cluded.

5 String solvers

String analysis has recently received increased attention, with several automata-based analysis
tools. Besides differences in notation, which the current proposal addresses, the tools also
differ in expressiveness and succinctness of representation for various fragments of (extended)
regular expressions. The tools also use different representations and algorithms for dealing
with the underlying automata theoretic operations. A comparison of the basic tradeoffs between

82

SMT-LIB Sequences and Regular Expressions N. Bjørner, V. Ganesh, R. Michel, M. Veanes

automata representations and the algorithms for product and difference is studied in [11], where
the benchmarks originate from a case study in [19].

The Java String Analyzer (JSA) [7] uses finite automata internally to represent strings with
the dk.brics.automaton library, where automata are directed graphs whose edges represent
contiguous character ranges. Epsilon moves are not preserved in the automata but are elimi-
nated upon insertion. This representation is optimized for matching strings rather than finding
strings.

The Hampi tool [16] uses an eager bitvector encoding from regular expressions to bitvector
logic. The Kudzu/Kaluza framework extends this approach to systems of constraints with
multiple variables and supports concatenation [22]. The original Hampi format does not directly
support regular expression quantifiers “at least m times” and “at most n times”, e.g., a regex
a{1,3} would need to be expanded to a|aa|aaa. The same limitation is true for the core
constraint language of Kudzu [22] that extends Hampi.

The tool presented in [14] uses lazy search algorithms for solving regular subset constraints,
intersection and determinization. The automaton representation is based on the Boost Graph
Library [23] and uses a range representation of character intervals that is similar to JSA.
The lazy algorithms produce significant performance benefits relative to DPRLE [13] and the
original Rex [27] implementation. DPRLE [13] has a fully verified core specification written in
Gallina [8], and an OCaml implementation that is used for experiments.

Rex [27] uses a symbolic representation of automata where labels are represented by predi-
cates. Such automata were initially studied in the context of natural language processing [21].
Rex uses symbolic language acceptors, that are first-order encodings of symbolic automata into
the theory of algebraic datatypes. The initial Rex work [27] explores various optimizations of
symbolic automata, such as minimization, that make use of the underlying SMT solver to elim-
inate inconsistent conditions. Subsequent work [26] explores trade-offs between the language
acceptor based encoding and the use of automata-specific algorithms for language intersec-
tion and language difference. The Symbolic Automata library [25] implements the algebra of
symbolic automata and transducers [24]. Symbolic Automata is the backbone of Rex and Bek.1

Kleene Boole re-range re-of-pred re-loop seq-concat seq-length Σ
JSA X X X BV16

Hampi X X BV8
Kudzu/Kaluza X X X X BV8

Symbolic Automata/Rex X X X X X ALL

Table 1: Expressivity of string tools.

Table 1 compares expressivity of the tools with an emphasis on regular expression con-
straints. Columns represent supported features. Kleene stands for the operations re-concat,
re-empty-set, re-empty-seq, re-union, and re-star. Boole stands for re-intersect and
re-complement. Σ refers to supported alphabet theories. In Hampi and Kudzu the Boolean
operations over languages can be encoded through membership constraints and Boolean oper-
ations over formulas. In the Symbolic Automata Toolkit, automata are generic and support all
SMT theories as alphabets.

A typical use of re-range is to succinctly describe a contiguous range of characters, such as
all upper case letters or [A-Z]. Similarly, re-of-pred can be used to define a character class
such as \W (all non-word-letter characters) through a predicate (represented as an array). For

1http://research.microsoft.com/bek/

83

SMT-LIB Sequences and Regular Expressions N. Bjørner, V. Ganesh, R. Michel, M. Veanes

example, provided that W is defined as follows

∀x(W [x]⇔ ¬((‘A’ ≤ x ≤ ‘Z’) ∨ (‘a’ ≤ x ≤ ‘z’) ∨ (‘0’ ≤ x ≤ ‘9’) ∨ x = ‘_’))

then (re-of-pred W) is the regex that matches all non-word-letter characters. Finally,
re-loop is a succinct shorthand for bounded loops that is used very frequently in regular
expressions.

MONA [10, 17] provides decision procedures for several varieties of monadic second–order
logic (M2L) that can be used to express regular expressions over words as well as trees. MONA
relies on a highly-optimized multi-terminal BDD-based representation for deterministic au-
tomata. Mona is used in the PHP string analysis tool Stranger [29] through a string manipu-
lation library.

Other tools include custom domain-specific string solvers [20, 28]. There is also a wide
range of application domains that rely on automata based methods: strings constraints with
length bounds [30]; automata for arithmetic constraints [6]; automata in explicit state model
checking [5]; word equations [1, 18]; construction of automata from regular expressions [15].
Moreover, certain string constraints based on common string library functions [4] (not using
regular expressions) can be directly encoded using a combination of existing theories provided
by an SMT solver.

6 A prototype for QF BVRE based on the Symbolic Au-
tomata Toolkit

This section describes a prototype implementation for QF BVRE. It is based on the Symbolic
Automata Toolkit [25] powered by Z3. The description sidesteps the current limitation that all
terms s of sort (Seq σ) are converted to terms of sort (List σ). While lists in Z3 satisfy all
the algebraic properties of sequences, only the operations equivalent to seq-empty, seq-cons,
seq-head, and seq-tail are (directly) supported in the theory of lists. This also explains why
seq-concat and seq-length (as is also noted in Table 1) are currently not supported in this
prototype.

To start with, the benchmark file is parsed by using Z3’s API method ParseSmtlib2File

providing a Z3 Term object ϕ that represents the AST of the assertion contained in the file.
The assertion ϕ is converted into a formula Conv(ϕ) where each occurrence of a membership
constraint (re-member s r) has been replaced by an atom (Accr s), where Accr is a new
uninterpreted function symbol called the symbolic languge acceptor for r. The symbol Accr is
associated with a set of axioms Th(r) such that, (Accr s) holds modulo Th(r) iff s is a sequence
that matches the regular expression r. The converted formula Conv(ϕ) as well as all the axioms
Th(r) are asserted to Z3 and checked for satisfiability.

The core of the translation is in converting r into a Symbolic Finite Automaton SFA(r) and
then defining Th(r) as the theory of SFA(r) [26]. The translation uses closure properties of
symbolic automata under the following (effective) Kleene and Boolean operations:

• If A and B are SFAs then there is an SFA A ·B such that L(A ·B) = L(A) · L(B).

• If A and B are SFAs then there is an SFA A ∪B such that L(A ∪B) = L(A) ∪ L(B).

• If A and B are SFAs then there is an SFA A ∩B such that L(A ∩B) = L(A) ∩ L(B).

• If A is an SFAs then there is an SFA A∗ such that L(A∗) = L(A)∗.

84

SMT-LIB Sequences and Regular Expressions N. Bjørner, V. Ganesh, R. Michel, M. Veanes

• If A is an SFAs then there is an SFA A such that L(A) = L(A).

The effectiveness of the above operations does not depend on the theory of the alphabet. In
SFAs all transitions are labeled by predicates. In particular, a bit-vector range (re-range m n)
is mapped into an anonymous predicate λx.(m ≤ x ≤ n) over bit-vectors and a predicate
(re-of-pred p) is just mapped to p. The overall translation SFA(r) now follows more-or-less
directly by induction of the structure of r. The loop construct (re-loop m n r) is unfolded
by using re-concat and re-union. Several optimizatons are possible that have been omitted
here.

As a simple example of the above translation, consider the regex

utf16 = ^([\0-\uD7FF\uE000-\uFFFF]|([\uD800-\uDBFF][\uDC00-\uDFFF]))*$

that describes valid UTF16 encoded strings. Using the SMT2 format and assuming the
defined sort as (_ BitVec 16) the regex is

(re-star (re-union (re-union (re-range #x0000 #xD7FF) (re-range #xE000 #xFFFF))

(re-concat (re-range #xD800 #xDBFF) (re-range #xDC00 #xDFFF))))

The resulting SFA(utf16) can be depicted as follows:

q0 q0 q1

λx.#xD800 ≤ x ≤ #xDBFF

λx.#xDC00 ≤ x ≤ #xDFFF

λx.(x ≤ #xD7FF∨ #xE000 ≤ x)

and the theory Th(utf16) contains the following axioms:

∀y(Accutf16(y)⇔ (y = ε ∨
(y 6= ε ∧ (head(y) ≤ #xD7FF ∨ #xE000 ≤ head(y)) ∧Accutf16(tail(y)))∨
(y 6= ε ∧ #xD800 ≤ head(y) ≤ #xDBFF ∧Acc1(tail(y)))))

∀y(Acc1(y)⇔ (y 6= ε ∧ #xDC00 ≤ head(y) ≤ #xDFFF ∧Accutf16(tail(y))))

Benchmarks in the proposed SMT-LIB format that are handled by the tool are available2.

7 Summary

We proposed an interchange format for sequences and regular expressions. It is based on the
features of strings and regular expressions used in current main solvers for regular expressions.
There are many possible improvements and extensions to this proposed format. For example,
it is tempting to leverage that SMT-LIB already allows string literals. The first objective is
to identify a logic that allows to exchange meaningful benchmarks between solvers and en-
able comparing techniques that are currently being developed for solving sequence and regular
expression constraints.

7.1 Contributors

Several people contributed to the discussions about SMTization of strings, including Nikolaj
Bjørner, Vijay Ganesh, Tim Hinrichs, Pieter Hooimeijer, Raphaël Michel, Ruzica Piskac, Cesare
Tinelli, Margus Veanes, Andrei Voronkov and Ting Zhang. This effort grew out from discussions
at Dagstuhl seminar [2] and was followed up at strings-smtization@googlegroups.com.

2http://research.microsoft.com/~nbjorner/microsoft.automata.smtbenchmarks.zip

85

strings-smtization@googlegroups.com
http://research.microsoft.com/~nbjorner/microsoft.automata.smtbenchmarks.zip

SMT-LIB Sequences and Regular Expressions N. Bjørner, V. Ganesh, R. Michel, M. Veanes

References

[1] Sebastian Bala. Regular language matching and other decidable cases of the satisfiability problem
for constraints between regular open terms. In STACS, pages 596–607, 2004.

[2] Nikolaj Bjørner, Robert Nieuwenhuis, Helmut Veith, and Andrei Voronkov. Decision Procedures
in Soft, Hard and Bio-ware - Follow Up (Dagstuhl Seminar 11272). Dagstuhl Reports, 1(7):23–35,
2011.

[3] Nikolaj Bjørner, Nikolai Tillmann, and Andrei Voronkov. Path feasibility analysis for string-
manipulating programs. In TACAS, 2009.

[4] Nikolaj Bjørner, Nikolai Tillmann, and Andrei Voronkov. Path feasibility analysis for string-
manipulating programs. In TACAS, 2009.

[5] Stefan Blom and Simona Orzan. Distributed state space minimization. J. Software Tools for
Technology Transfer, 7(3):280–291, 2005.

[6] Bernard Boigelot and Pierre Wolper. Representing arithmetic constraints with finite automata: An
overview. In ICLP 2002: Proceedings of The 18th International Conference on Logic Programming,
pages 1–19, 2002.

[7] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise Analysis of String
Expressions. In SAS, 2003.

[8] Thierry Coquand and Gérard P. Huet. The calculus of constructions. Information and Computa-
tion, 76(2/3):95–120, 1988.

[9] Vijay Ganesh, Adam Kiezun, Shay Artzi, Philip J. Guo, Pieter Hooimeijer, and Michael D. Ernst.
Hampi: A string solver for testing, analysis and vulnerability detection. In Ganesh Gopalakrishnan
and Shaz Qadeer, editors, CAV, volume 6806 of Lecture Notes in Computer Science, pages 1–19.
Springer, 2011.

[10] J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, and A. Sandholm.
Mona: Monadic second-order logic in practice. In TACAS’95, volume 1019 of LNCS, 1995.

[11] Pieter Hooimeijer and Margus Veanes. An evaluation of automata algorithms for string analysis.
In VMCAI’11, volume 6538 of LNCS, pages 248–262. Springer, 2011.

[12] Pieter Hooimeijer and Westley Weimer. A decision procedure for subset constraints over regular
languages. In PLDI, 2009.

[13] Pieter Hooimeijer and Westley Weimer. A decision procedure for subset constraints over regular
languages. In PLDI, 2009.

[14] Pieter Hooimeijer and Westley Weimer. Solving string constraints lazily. In ASE, 2010.

[15] Lucian Ilie and Sheng Yu. Follow automata. Information and Computation, 186(1):140–162, 2003.

[16] Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and Michael D. Ernst. HAMPI: a
solver for string constraints. In ISSTA, 2009.

[17] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. MONA implementation secrets.
International Journal of Foundations of Computer Science, 13(4):571–586, 2002.

[18] Michal Kunc. What do we know about language equations? In Developments in Language Theory,
pages 23–27, 2007.

[19] Nuo Li, Tao Xie, Nikolai Tillmann, Peli de Halleux, and Wolfram Schulte. Reggae: Automated
test generation for programs using complex regular expressions. In ASE’09, 2009.

[20] Yasuhiko Minamide. Static approximation of dynamically generated web pages. In WWW ’05,
pages 432–441, 2005.

[21] Gertjan Van Noord and Dale Gerdemann. Finite state transducers with predicates and identities.
Grammars, 4:263–286, 2001.

[22] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant, and Dawn Song.
A Symbolic Execution Framework for JavaScript, Mar 2010.

[23] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library: User Guide

86

SMT-LIB Sequences and Regular Expressions N. Bjørner, V. Ganesh, R. Michel, M. Veanes

and Reference Manual (C++ In-Depth Series). Addison-Wesley Professional, December 2001.

[24] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjørner. Symbolic finite state transduc-
ers: Algorithms and applications. In POPL’12, 2012.

[25] Margus Veanes and Nikolaj Bjørner. Symbolic automata: The toolkit. In C. Flanagan and
B. König, editors, TACAS’12, volume 7214 of LNCS, pages 472–477. Springer, 2012.

[26] Margus Veanes, Nikolaj Bjørner, and Leonardo de Moura. Symbolic automata constraint solving.
In C. Fermüller and A. Voronkov, editors, LPAR-17, volume 6397 of LNCS/ARCoSS, pages 640–
654. Springer, 2010.

[27] Margus Veanes, Peli de Halleux, and Nikolai Tillmann. Rex: Symbolic Regular Expression Ex-
plorer. In ICST’10. IEEE, 2010.

[28] Gary Wassermann and Zhendong Su. Sound and precise analysis of web applications for injection
vulnerabilities. In PLDI, 2007.

[29] Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Stranger: An automata-based string analysis tool
for PHP. In TACAS’10, LNCS. Springer, 2010.

[30] Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. Symbolic String Verification: Combining String
Analysis and Size Analysis. In TACAS, pages 322–336, 2009.

87

	Introduction
	Seq: A Theory of Sequences
	The Signature of Seq
	Semantics Seq
	Derived operations
	Extraction and lengths

	RegEx: A Theory of Regular Expressions
	The Signature of RegEx
	Semantics of RegEx
	Anchors

	The logic QF_BVRE
	String solvers
	A prototype for QF_BVRE based on the Symbolic Automata Toolkit
	Summary
	Contributors

