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Abstract

We consider an extension of two-variable, first-order logic with counting quantifiers
and arbitrarily many unary and binary predicates, in which one distinguished predicate
is interpreted as the mother-daughter relation in an unranked forest. We show that both
the finite satisfiability and the general satisfiability problems for the extended logic are
decidable in NExpTime. We also show that the decision procedure for finite satisfiability
can be extended to the logic where two distinguished predicates are interpreted as the
mother-daughter relations in two independent forests.

1 Introduction

Two-variable logics. The two-variable fragment of first-order logic, here denoted FO2,
is the set of function-free, first-order formulas (with equality) featuring at most two variables.
The two-variable fragment with counting, here denoted C2, is the set of function-free, first-order
formulas featuring at most two variables, but with the counting quantifiers ∃[≤C], ∃[≥C] and

∃[=C], (for every C ≥ 0) allowed. The following facts are known. The logic FO2 has the
finite model property [7], and its satisfiability (= finite satisfiability) problem is NExpTime-
complete [5]. The logic C2 is expressive enough for the finite model property to fail; nevertheless,
its satisfiability and finite satisfiability problems remain NExpTime-complete [6, 8, 9].

Contributions, techniques. A forest is a well-founded directed graph (possibly infinite)
in which each vertex has at most one incoming edge. It is impossible, in first-order logic, to
express the fact that the graph of a given binary relation is a forest. This suggests enriching
FO2 and C2 by adding such a facility. Denote by C2[↓] and C2[↓1, ↓2] the extensions of C2 in
which respectively one or two distinguished binary predicates are required to be interpreted as
unranked forests. Within the logic C2[↓] one can state that the graph of a given binary relation
is connected, since every connected graph has a spanning tree.
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A restriction of the logic C2[↓1, ↓2] was investigated in [4], in which the forests in question
are required to have bounded rank: for some fixed number m, no element of either forest has
more than m daughters. It was shown that the finite satisfiability problem for this logic is in
NExpTime. In the present paper, the restriction to forests of bounded rank is lifted, without
affecting the complexity of finite satisfiability. It is also shown that the satisfiability problem for
the logic C2[↓] is in NExpTime.

Theorem 1. The finite satisfiability problems for C2[↓] and C2[↓1, ↓2] are in NExpTime.

Theorem 2. The satisfiability problem for C2[↓] is in NExpTime.

Theorem 1 strengthens the result of [4], while simplifying its proof. The key to this
simplification is a closer look at the algorithm given in [10] for deciding finite satisfiability in C2,
which the proof in [4] modifies. By undertaking a more fine-grained analysis of the complexity of
this algorithm, we can reduce the problem of determining finite satisfiability of a formula in C2[↓]
(or C2[↓1, ↓2]) to that of determining the finite satisfiability of an exponentially larger C2-formula.
This allows us to treat the result of [10] as, essentially, a black box, which was not possible
in [4]. Theorem 2 uses new techniques to reduce the general satisfiability problem for C2[↓]
to the corresponding finite satisfiability problem. In the context of extensions of C2, proving
general satisfiability usually is not an easy task. In fact, most such extensions, including [4, 3, 1],
do not touch this problem; an exception is [11]. Thus, the contributions of the present paper
are: (a) we lift the earlier restriction to forests of bounded rank; and (b) we consider general
satisfiability for C2[↓] (thus allowing interpretation over a single, infinite forest). The techniques
employed here also work for other extensions of C2 over trees; in a separate paper, we prove the
decidability of the finite satisfiability problem for C2[↓,→], where the additional predicate → is
interpreted as the next-sister-relation.

Related work. The languages considered in the present paper contain both counting
quantifiers and arbitrarily many binary predicates; however, they employ only a single nav-
igational predicate, namely the mother-daughter relation ↓. When counting quantifiers are
absent, and only unary predicates appear in the signature, we can extend the palette of navi-
gational possibilities while retaining decidability of finite satisfiability. Thus, for example [2]
considers the logic FO2 and its guarded fragment, GF2, interpreted over a single finite tree, and
accessed by various combinations of navigational predicates including ↓ (mother-daughter), ↓+

(mother-descendant), → (next-sister) and →+ (older-sister). Complexity of satisfiability for
these logics varies from PSpace to ExpSpace. Note that all these logics allow vocabularies
with arbitrarily many unary-, but no uninterpreted (i.e. non-navigational) binary predicates,
and some of them additionally impose the unary alphabet restriction (exactly one predicate
holds on each node of a structure). With these extended sets of navigational possibilities, the
addition of both counting quantifiers and uninterpreted binary predicates is known to produce
significant increases in complexity. Thus, for example, taking the logic FO2[∗, 0, ↓, ↓+,→,→+]
as a starting point (two-variable first-order logic with arbitrarily many unary predicates, no
binary predicates, and the indicated navigational predicates) it was shown in [1] that extending
this logic with either additional binary predicates or counting quantifiers does not increase
the complexity of finite satisfiability (ExpSpace); however, extending with both yields a logic
whose decidability status is unknown, but is at least as hard as the non-emptiness problem in
Vector Addition Tree Automata (VATA).
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2 The finite satisfiability problem

Overview of the decision procedure. Although C2 cannot express that a distinguished
predicate tM is a forest in every finite model M, it can express that the graph of tM consists of
a number of trees and a number of cycles. Under certain conditions, by a simple rewiring of
the model we may implant such a cycle into a tree thus removing the cycle; by repeating this
procedure we remove all cycles one by one and obtain a model where t is interpreted as a forest.

Given an input C2[↓] formula ψ whose finite satisfiability is to be determined we produce
an equisatisfiable C2 formula ψS by adding to ψ some conjuncts that encode a forest. The
parameter S of ψS , called a shrubbery, is a description of tree components in a model, and
enables the implantation procedure. The shrubbery S is of size exponential in the signature
of ψ and can be simply guessed; this however gives ψS of exponential size, which might lead to
an exponentially slower algorithm. One of contributions of this paper is the notion of effective
size of a formula. We show that ψS has polynomial effective size and that the satisfiability of
such formulas can be tested without moving to a higher complexity class.

The implantation procedure is very similar to the one used in [4]. However, the techniques
developed here not only lift the restriction in [4] to ranked trees, but also enable us to use the
result of [10] directly, without having to reconstruct the proof given there (as was done in [4]).

2.1 Preliminaries

In the sequel, formula means a formula of C2. A formula ϕ is in normal form if it conforms to
the pattern:

∀x∀y(x = y ∨ α) ∧
m∧
h=1

∀x∃[≺hCh]y(βh ∧ x 6= y), (1)

where α and the βh are quantifier-free, equality-free formulas, m is a positive integer, the ≺h are
either = or ≤, and the Ch are (bit-strings representing) non-negative integers. The integer m is
the multiplicity of ϕ, and the integer C = max (C1, . . . , Cm) the ceiling of ϕ. The modulus of ϕ
is the formula θ = β1 ∨ . . . ∨ βm. We assume without loss of generality that C ≥ 1. Observe
that if a ≺h is = then ψ is not satisfiable over any domain of cardinality less than or equal Ch.
The following lemma uses a familiar technique originally employed in [12] in the context of FO2.

Lemma 1 ([10, Lemma 1]). Given a C2-formula ϕ, we can compute, in polynomial time, a
normal-form C2-formula ψ, with ceiling C, such that, for any set A of cardinality greater than C,
ψ is satisfiable (in either C2, C2[↓] or C2[↓1, ↓2]) over the domain A if and only if ϕ is.

In the sequel, we shall require fine control over the various parameters in a normal form
formula, and in order to obtain this, we generalize the notion slightly. Let θ be a quantifier-free
formula. A formula ψ with free variable x is θ-eclipsed if it is a Boolean combination of formulas
which are either (i) quantifier-free or (ii) of the form ∃[./B]y χ, where B is a non-negative integer,
the symbol ./ is chosen from {≤,=,≥}, and χ is a quantifier-free formula such that |= χ→ θ.
A formula ψ is in weak normal form if it conforms to the pattern:

ϕ ∧
∧̀
g=1

(
∃[./gBg ]x. ξg

)
∧ ∀x.η, (2)

where ϕ is in normal form with modulus θ, B1, . . . , B` are non-negative integers, ξ1, . . . , ξ` are
quantifier-free formulas with free variable x, the symbols ./1, . . . , ./` are chosen from {≤,=,≥},
and η is θ-eclipsed. We define the multiplicity and ceiling of ψ to be the multiplicity and ceiling
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of ϕ respectively. We take formulas that are trivially equivalent to (weak) normal form formulas
to be in (weak) normal form by courtesy. Thus, any normal-form formula is automatically also
in weak normal form.

The satisfiability and finite satisfiability problems for C2 are decidable and in fact NExpTime-
complete [6, 8, 9]. In this paper, we require fine control over both the parameters of the formula
and the features of the model in question. Let ψ be a (weak) normal-form C2-formula over a
signature Σ having ceiling C and multiplicity m. The size of ψ, denoted |ψ|, is the number of
symbols it contains (with quantifier subscripts coded in binary). We say that the effective size
of ψ is the quantity |Σ|+ log(|ψ|) + log(mC).

Theorem 3. There exists a non-deterministic procedure which, given a C2-formula ψ in weak
normal form, runs in time bounded by a fixed exponential function of the effective size of ψ, and
which has a successful run if and only if ψ is finitely satisfiable.

Proof. An immediate corollary of the proof of [10, Theorem 1], in which the finite satisfiability of
a normal-form formula ψ with multiplicity m and ceiling C is reduced to the solvability over N of
a guessed system E of Boolean combinations of linear inequalities, together with a check that E
verifies the satisfiability of ψ. The number of linear inequalities in E is, by inspection [10, p. 51,
formulas (C1)–(C6)], exponential in |Σ|+ log(mC). Furthermore, checking that E verifies the
satisfiability of ψ requires time polynomial in |ψ|. Thus, the procedure runs in (nondeterministic)
exponential time. The relaxation to weak normal form requires just two changes. First, to
deal with the conjuncts ∃[./gBg]x. ξg, we must add to the system E an additional collection of `
(in)equalities. Second, when checking that E verifies the satisfiability of ψ, we take into account
the eclipsed conjunct ∀x.η. Both changes are completely routine.

A forest is a directed graph G = (V,E) in which E is inverse-functional and well-founded.
That is: for all v ∈ V there exists at most one u ∈ V such that uEv, and V contains no infinite
reverse chains v0, v1, . . . with vi+1Evi for all i ≥ 0. It follows from well-foundedness that E is
anti-symmetric (for all u, v ∈ V , uEv implies ¬vEu), and hence irreflexive. A connected forest
is called a tree.

In this section, we employ the distinguished binary predicate t whose interpretation, in
the logic C2[↓], is constrained to be a forest. In order to be able to discuss both C2 and C2[↓]
together, we call any structure A in which the graph (A, tA) is a forest dendral. Thus, C2[↓] is
the logic C2 restricted to dendral structures. The universe of a structure A is denoted A.

For technical reasons we employ a further distinguished binary predicate, s, and two distin-
guished unary predicates, s+, s−. We define the C2-formula ∆, featuring these predicates, to be
the conjunction ∆0 ∧∆1 ∧∆2 ∧∆3, where

∆0 :=∀x∀y(t(x, y)→ ¬t(y, x)) ∧ ∀x∃[≤1]y.t(y, x)

∆1 :=∀x∀y(s(x, y)→ t(x, y)) ∧ ∀x∃[≤1]y.s(x, y)

∆2 :=∀x(s+(x)→ (∃[=1]y.s(x, y) ∧ ∀y¬s(y, x)))

∆3 :=∀x((∃[=1]y.s(y, x) ∧ ∀y¬s(x, y))→ s−(x)).

For any finite model A of ∆0, the relation tA is anti-symmetric and inverse functional. Hence, it
is easy to see that the graph G = (A, tA) consists of components which are either trees or which
contain t-cycles, namely sequences of distinct elements a0, . . . , an−1 (n ≥ 3) such that, writing
an = a0, we have A |= t[ai, ai+1] for all i (0 ≤ i < n). Elements belonging to tree-components
will be said to be dendral ; elements belonging to t-cycles will be said to be cyclic. Some elements
may be neither dendral nor cyclic; however, if there are no cyclic elements, then all elements are
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dendral. Any element a ∈ A such that there is no b with A |= t[b, a] will be called a root. By
definition, elements not incident on any t-edge (which form isolated vertices of G) are roots. It
is obvious that all roots are dendral. Of course, if A is dendral, then A |= ∆0, and, moreover,
every element of A is dendral.

Assuming that ∆0 holds, ∆1 then states that the graph of s consists of zero or more disjoint,
linear sequences of t-edges. A maximal sequence a0, . . . , an (n ≥ 1) such that A |= s[ai, ai+1] for
all i (0 ≤ i < n), will be called an s-chain. The formula ∆2 ensures that s-chains begin with all
elements satisfying s+, while ∆3 ensures that s-chains end only with elements satisfying s−.

Any formula with two free variables is assumed to have those variables taken in the order
x, y. Thus, we write A |= θ[a, b], where a, b are elements of A, to indicate that θ is satisfied
in A under the assignment a 7→ x and b 7→ y. We denote by θ(y, x) the result of transposing
the variables in θ. Finally, if ξ has x as its only free variable, we denote by ξ(y) the result of
replacing x by y in ξ.

Let Σ be a signature of unary and binary predicates. A 1-type is a maximal consistent set of
literals over Σ involving only the variable x. Likewise, a 2-type is a maximal consistent set of
literals over Σ involving only the variables x and y and containing the literal x 6= y. If τ is a
2-type, we denote by τ−1 the 2-type obtained by exchanging the variables x and y in τ , and
call τ−1 the inverse of τ . We denote by tp1(τ) the 1-type obtained by removing from τ any
literals containing y; and we denote by tp2(τ) the 1-type obtained by first removing from τ any
literals containing x, and then replacing all occurrences of y by x. Evidently, tp2(τ) = tp1(τ−1).
We equivocate freely between finite sets of formulas and their conjunctions; thus, we treat
1-types and 2-types as formulas, where convenient. Let A be any structure interpreting Σ. If
a ∈ A, then there exists a unique 1-type π such that A |= π[a]; we denote π by tpA[a] and say
that a realizes π. If, in addition, b ∈ A \ {a}, then there exists a unique 2-type τ such that
A |= τ [a, b]; we denote τ by tpA[a, b] and say that the pair a, b realizes τ . Evidently, in that case,
τ−1 = tpA[b, a]; tp1(τ) = tpA[a]; and tp2(τ) = tpA[b].

The following terminology helps us to characterize configurations of pairs of elements in
structures. Let θ be a quantifier-free, equality-free formula over Σ, and A any structure
interpreting Σ. A θ-ray in A is an ordered pair of distinct elements 〈a, b〉 ∈ A2 such that
A |= θ[a, b]; we say that the ray in question is emitted by a and absorbed by b, or simply that a
sends a θ-ray to b. A θ-ray-type is a 2-type ρ over Σ such that |= ρ→ θ. (Thus, a θ-ray-type is
the 2-type of some possible θ-ray.) We refer to tp1(ρ) and tp2(ρ) as the emission-1-type and
absorption-1-type of ρ, respectively. For Y a positive integer, we say that A has θ-degree Y if no
element of A emits more than Y θ-rays. As an illustration of these concepts, let ψ be a formula
over Σ of the form (1), and suppose A |= ψ. Setting θ := β1 ∨ · · · ∨ βm and Y = C1 + · · ·+ Cm,
we see that A has θ-degree Y . A θ-ray 〈a, b〉 is said to be invertible if also A |= θ[b, a]. Similarly,
with ray-types: a θ-ray-type ρ is said to be invertible if |= ρ−1 → θ. A 2-type τ is said to be
θ-dark if neither τ nor τ−1 is a θ-ray-type.

The following two lemmas can be established by simple counting arguments.

Lemma 2. Let θ be a quantifier-free, equality-free formula over a signature Σ. Let A be a
structure interpreting Σ, of θ-degree Y , and suppose B,B′ are subsets of A of cardinality 2(Y +1).
Then there exist a ∈ B, b ∈ B′ such that a 6= b and tpA[a, b] is θ-dark.

Lemma 3. Let θ be a quantifier-free, equality-free formula over a signature Σ. Let A be a
structure interpreting Σ, of θ-degree Y , and suppose B,B′ are subsets of A of cardinalities
(3Y + 2) and 2(Y + 1) respectively. Then, for any b′ ∈ A, there exist a ∈ B, b ∈ B′, such that
a 6= b, tpA[a, b] is θ-dark, and b′ sends no θ-ray to a.

The following terminology helps us to characterize structures in terms of the configurations of

218



Two-variable Logic with Counting in Forests W. Charatonik, Y. Guskov, I. Pratt-Hartmann, P. Witkowski

elements that arise in them. Let A be a structure interpreting signature Σ, X a positive integer
and θ a quantifier-free, equality-free formula over Σ. We call A X-differentiated if, for every
1-type π over Σ, the set Aπ = {a ∈ A | tpA[a] = π} satisfies either |Aπ| ≤ 1 or |Aπ| > X. We
call A: (i) θ-semichromatic if no invertible θ-ray has the same emission- and absorption 1-type;
(ii) θ-chromatic if it is θ-semichromatic and no element emits two or more invertible θ-rays
having the same absorption-type as each other; and (iii) θ-superchromatic if it is θ-semichromatic
and no element emits two or more θ-rays at least one of which is invertible, having the same
absorption-type as each other. Note that a θ-semichromatic structure A is θ-chromatic if there is
no triple of distinct elements b1, a, b2, with tpA[b1] = tpA[b2], such that tpA[b1, a] and tpA[a, b2]
are invertible θ-ray-types; likewise, A is θ-superchromatic if there is no triple of distinct elements
b1, a, b2, with tpA[b1] = tpA[b2], such that tpA[b1, a] is an invertible θ-ray-type and tpA[a, b2] a
θ-ray-type. We can write the definitions of these concepts as various types of C2-formulas.

Lemma 4. Let A be a structure interpreting a signature Σ, and θ a quantifier-free, equality-
free formula over Σ. There exist θ-eclipsed formulas χ−θ , χθ and χ+

θ such that: (i) A is
θ-semichromatic if and only if A |= ∀x.χ−θ , (ii) A is θ-chromatic if and only if A |= ∀x.χθ; (iii)
A is θ-superchromatic if and only if A |= ∀x.χ+

θ . All formulas have size at most O((|θ|+|Σ|)·2|Σ|).

For structures with bounded θ-degree Y , θ-(super)chromaticity and X-differentiation can be
ensured by expanding the signature with a suitable collection of unary predicates:

Lemma 5. Let θ be a quantifier-free, equality-free formula interpreting a signature Σ, and
suppose A is a structure interpreting Σ with θ-degree Y . Then A can be expanded to a θ-chromatic
structure over a signature extending Σ with at most dlog(Y 2+1)e new unary predicates; moreover,
A can be expanded to a θ-superchromatic structure over a signature extending Σ with at most
dlog(2Y 2 + 1)e new unary predicates.

Lemma 6 ([10, Lemma 5]). Let A be a structure and X a positive integer. Then A can be
expanded to an X-differentiated structure A′ by interpreting at most dlogXe additional unary
predicates. If A is θ-(super)chromatic, for some θ, then so is A′.

We now construct apparatus for describing the ‘local environment’ of elements in super-
chromatic structures interpreting Σ. Let θ be a quantifier-free, equality-free formula over Σ,
and let the θ-ray-types be listed in some fixed order (depending on Σ and θ) as ρ1, . . . , ρM .
A θ-star-type is an (M + 1)-tuple σ = 〈π, v1, . . . , vM 〉, where π is a 1-type over Σ and the vj
are cardinal numbers (not-necessarily finite) such that vj 6= 0 implies tp1(ρj) = π for all j
(1 ≤ j ≤ M). We denote the 1-type π by tp(σ). To motivate this terminology, suppose A
is a structure interpreting Σ. For any a ∈ A, we define stAθ [a] = 〈tpA[a], v1, . . . , vM 〉, where
vj = |{b ∈ A : b 6= a and tpA[a, b] = ρj}|. Evidently, stAθ [a] is a θ-star-type; we call it the
θ-star-type of a in A, and say that a realizes stAθ [a]. Intuitively, the θ-star-type of an element
records the number of θ-rays of each type emitted by some element. It helps to think, informally,
of a θ-star-type σ as emitting a collection of θ-rays of various types, as shown in Fig. 1b). To
understand the significance of θ-star-types, consider again the formula ψ given in (1), and again
let θ := β1 ∨ · · · ,∨βm. If A is a structure interpreting the signature of ψ, whether A |= ψ
is determined entirely by the 2-types and the θ-star-types realized in A. More formally, we
say that a 2-type τ is compatible with ψ if τ ∧ α ∧ α(y, x) is consistent; similarly a star-type
σ = 〈π, v1, . . . , vM 〉 is compatible with ψ if (i) each of the ray-types emitted by σ is compatible
with ψ and, (ii) for all h (1 ≤ h ≤ m), the total number of rays whose type entails βh is,
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a b
ρ

tpA[a] = tp1(ρ) tpA[b] = tp2(ρ)

(a)

π

v1

v2

vM

ρ1

ρ1

ρ2

ρ2

ρM

ρM

(b)

Figure 1: Depiction of: (a) an element a sending a ray of type ρ to an element b in a structure
A; and (b) a star-type 〈π, v1, v2, . . . , vM 〉, emitting vj rays of type ρj for all j (1 ≤ j ≤M).

respectively, equal to Ch (if ≺h is =) or bounded by Ch (if ≺h is ≤):

m∑
j=1

{vj | 1 ≤ j ≤M and |= ρj → βh} ≺h Ch

Thus, A |= ψ just in case all the θ-star-types and θ-dark 2-types realized in A are compatible
with ψ. These notions are extended to a formula ψ in weak normal form in the obvious way.

A θ-star-type σ is: (i) semichromatic if it does not emit any invertible θ-rays with absorption
type tp(σ); (ii) chromatic if it is semichromatic and does not emit any two invertible θ-rays that
have the same absorption-type as each other; superchromatic if it is semichromatic and does
not emit two θ-rays, at least one of which is invertible, that have the same absorption-type as
each other. Thus, a structure interpreting Σ is θ-(semi/super-) chromatic if and only if every
θ-star-type it realizes is (semi/super-) chromatic.

We finish these preliminaries with some notation for labelling elements in structures. Let
d̄ = d1, . . . , dn be a sequence of unary predicates. For all k (0 ≤ k < 2n), we abbreviate by
d̄〈k〉 the quantifier-free, equality-free formula δ1 ∧ · · · ∧ δn, where, for all j (1 ≤ j ≤ n), δj is
dj(x) if the j-th bit in the n-digit binary representation of k is 1, and ¬dj(x) otherwise. We call
d̄〈k〉(x) the k-th labelling formula (over d1, . . . , dn). Evidently, if A = {a0, . . . , aM−1} is a set
of cardinality M ≤ 2n, then we can interpret the predicates in dj (1 ≤ j ≤ n) over A so as to
ensure that, for all k (0 ≤ k < M), ak satisfies d̄〈k〉.

2.2 Shrubberies and their logical encodings

Turning to the logic C2[↓], for the rest of this section, we assume that all signatures feature the
distinguished binary predicate t. Let Σ be a signature. A 2-type over Σ containing either of the
atoms t(x, y) or t(y, x) will be said to be arboreal. A shrubbery over Σ is a triple S = (V,E,L),
where (V,E) is a non-empty, finite forest and L a labelling function defined on V ∪E such that:

(i) for all v ∈ V , L(v) is a 1-type (over Σ);

(ii) for all (u, v) ∈ E, L(u, v) is either a 2-type (over Σ) containing the atom t(x, y) or is the
special symbol $.

We refer to any edge labelled $ as a special edge; all other edges are ordinary. We define |S|,
the size of S, to be the cardinality of the set V , and we assume that V is enumerated in some
fixed way as {v0, . . . , v|S|−1}. For any positive integer X, we say that S is X-differentiated if,
for every 1-type π over Σ, either |L−1(π)| ≤ 1 or |L−1(π)| > X—that is, if either at most one
or more than X vertices in V are labelled with any particular 1-type.
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By way of motivation, we note that, if A is dendral, then we can always construct a shrubbery
S by taking any subgraph G of the forest (A, tA), with vertices and edges labelled by their 1-
and 2-types, and then optionally collapsing some number of linear paths in G to single edges
(i.e. taking a topological minor), labelling the newly-formed edges with the special symbol, $
(Fig. 2). Indeed, if A is X-differentiated, then, by selecting G appropriately, and being careful
which chains we collapse, we can ensure that S also is X-differentiated. This observation is
formalized in Lemma 7.

Suppose that S = (V,E, L) is a shrubbery over Σ. We define a formula ∆S = ∆S
1 ∧ · · · ∧∆S

8

encoding S. Our formula features collections p1, . . . , pn, s1, . . . , sn of new unary predicates,
where n = dlog(|S|+ 1)e, in addition to the predicates t, s, s+ and s− featured in ∆. Recall
that p̄〈k〉 denotes the k-th labelling formula (0 ≤ k < 2n) over p1, . . . , pn, and similarly for
s̄〈k〉. For ease of reading, we present the conjuncts of ∆S using their English glosses under
the (helpful) assumption that the formula ∆ is true; of course, however, these are really
C2-formulas in weak normal form (modulo trivial logical manipulation). Thus, for instance, we

have ∆S
1 ≡

∧|S|−1
k=0 ∃[=1]x.p̄〈k〉; ∆S

2 –∆S
8 are purely universal. The complete list is as follows.

∆S
1 : For 0 ≤ k < |S|, there exists a unique element satisfying p̄〈k〉, intuitively, the k-th element

in the enumeration of V .

∆S
2 : No element corresponding to a root of the forest (V,E) has any incoming t-edges.

∆S
3 : The element corresponding to any vertex of V has the 1-type given to that vertex by L,

and the elements corresponding to any ordinary edge of E have the 2-type given to that
edge by L.

∆S
4 : Any vertex u such that 〈u, v〉 is a special edge corresponds to an element satisfying s+ and

hence starts an s-chain.

∆S
5 : For 0 ≤ k < |S|, if the first element of an s-chain satisfies p̄〈k〉, then all subsequent

elements satisfy s̄〈k〉.

∆S
6 : If (vi, vj) is a special edge of S, then any s-chain with non-initial elements satisfying s̄〈i〉,

has final element satisfying p̄〈j〉.

∆S
7 : The only 1-types realized in the structure are those labelling the vertices of S, while the

only arboreal 2-types realized in the structure are those labelling the ordinary edges of S.

∆S
8 : The only 1-types realized more than once in the structure are those labelling more than

one vertex of S.

Observe that ∆S
4 , ∆S

5 and ∆S
6 together ensure that vertices of S linked by special edges correspond

to elements of A joined by s-chains.

2.3 The reduction

We present a non-deterministic procedure, FinSatF(ψ), for determining whether a given weak
normal-form C2[↓]-formula, ψ, has a finite, dendral model. Since ψ is in weak normal form, we
may write it as

ϕ ∧
∧̀
g=1

(
∃[./gBg ]x. ξg

)
∧ ∀x.η, (3)
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where ϕ is a normal-form formula with multiplicity m, ceiling C, and modulus θ′. Define
Y = mC + 1 and X = 3Y + 2, and let Σ− be the signature of ψ (which we may assume
contains the distinguished predicate t), and let Σ be Σ− together with dlog(2Y 2 + 1)e+ dlogXe
fresh unary predicates. Let θ := θ′ ∨ t(y, x), and let χ+

θ be the formula of Lemma 4 encoding
the property of θ-superchromaticity over Σ. Recall the sentence ∆ governing the predicates
s, s+ and s− (which, we may assume, do not belong to Σ). A simple check shows that the
formula ψS := ψ ∧ ∀x χ+

θ ∧∆ ∧∆S is in weak normal form with modulus θ ∨ s(x, y) ∨ s(y, x).
(The additional disjuncts are required by ∆.) Let FinSat(·) be the procedure for testing finite
satisfiability of a C2-formula in weak normal form, as guaranteed by Theorem 3. The procedure
FinSatF(ψ) consists of two steps:

1. Non-deterministically guess an X-differentiated shrubbery S over Σ of size at most
5(X · 2|Σ| + 24|Σ|), and compute the formula ψS := ψ ∧ ∀x χ+

θ ∧∆ ∧∆S , in weak normal
form.

2. Run FinSat(ψS) and report the result.

Recall that FinSat runs in time bounded by an exponential function of the effective size of its
argument.

2.4 Correctness: direction 1

We show that, if ψ has a finite, dendral model, then the procedure FinSatF(ψ) has a successful
run. We begin with a property secured by the formula ∆ ∧∆S .

Lemma 7. If A is a finite, X-differentiated dendral structure interpreting Σ, then there exists
an X-differentiated shrubbery S over Σ, of size at most 5(X · 2|Σ| + 24|Σ|), such that A can be
expanded to a model A+ |= ∆ ∧∆S.

Proof. Let L = 2|Σ| be the number of 1-types realized in A, and M ≤ 24|Σ| the number of
arboreal 2-types realized in A. For every 1-type π realized in A exactly once, mark the unique
element satisfying π. For every 1-type π realized in A more than once, select X elements
satisfying π, and mark them. For every arboreal 2-type τ realized in A, pick distinct elements
a, b realizing it (in either direction), and mark those elements. Let V0 be the set of marked
elements; bearing in mind that arboreal 2-types are never equal to their inverses, it is enough
to pick |V0| ≤ XL + M elements. Let W be the set of elements of V0 together with all their
ancestors in the forest (A, tA), and let F be the restriction of tA to W . Thus, H = (W,F ) is
a forest in which every leaf vertex is in V0, so that H has at most XL+M branches. Let V1

be the set of vertices in W having at least two daughters in H; thus, |V1| ≤ XL + M . Let
V2 be the set of daughters of any vertex of V0 ∪ V1 in H; thus |V2| ≤ |V0 ∪ V1| + (XL + M).
Let V = V0 ∪ V1 ∪ V2; thus |V | ≤ 5(XL + M) ≤ 5(X · 2|Σ| + 24|Σ|). Let V be enumerated as
v0, . . . , v|V |−1. Observe that, for all w ∈W \ V , w has exactly one F -predecessor and exactly
one F -successor. That is: the elements of W \ V correspond to linear strands in the forest H.

Remembering that V ⊆ A, for every v ∈ V , define L(v) = tpA[v]. Let E0 be the restriction
of F to V , and, for any edge 〈u, v〉 ∈ E0, define L(u, v) = tpA[u, v]. By construction of the
graph H, L(u, v) contains the atom t(x, y). Let E1 be the set of ordered pairs 〈u, v〉 from V
such that there exists a path in the forest H of the form u = a0, . . . , am = v (m ≥ 2) such that
for all i (1 ≤ i < m), ai ∈ W \ V . In that case, call the sequence of elements {a0, . . . , am} a
special chain, denoted S(u), and we define L(u, v) = $. In other words, special chains are linear
strands in the forest F leading from one element of V to another, having no elements of V
between the two termini. Let E = E0 ∪ E1. Thus (V,E) is a finite forest and S = (V,E, L) a
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S = (V,E,L)

Figure 2: Extraction of a shrubbery S from a dendral structure A and its encoding in A+ (proof
of Lemma 7). White nodes represent elements of W \ V , in this case forming a single s-chain.

shrubbery. Fig 2 shows a small example. Observe that the edges in E0 are ordinary edges of S
(labelled with 2-types), and those in E1, special edges (labelled with $).

Recalling the enumeration v0, . . . , v|V |−1 of V , we proceed to expand A to a model A+

satisfying ∆S . First we interpret the predicates p1, . . . , pn so that vk satisfies the labelling
formula p̄〈k〉 for all k (0 ≤ k < |V |), and so that all elements of A \ V satisfy p̄〈|V |〉. Recalling
that each special edge (u, v) corresponds to a special chain u = a0, . . . , am = v, we take u = a0

to satisfy the unary predicate s+, v = am to satisfy the unary predicate s−, and each pair
〈ai, ai+1〉 (0 ≤ i < m) to satisfy the binary predicate s. Finally, we interpret the predicates
s1, . . . , sn so that each element ai (1 ≤ i ≤ m) satisfies the labelling formula s̄〈k〉, where u = vk.
Thus, the s̄ index of each element in a special chain (except the first) equals the p̄-index of the
first element. All elements of A which are not members of special chains can be taken to satisfy
s̄〈|V |〉. It is straightforward to check that A+ |= ∆ ∧∆S .

We are now in a position to show that, if ψ, as given in (3), has a finite, dendral model,
then the procedure FinSatF(ψ) has a successful run. Suppose A− |= ψ, with A− finite and
dendral, interpreting the signature Σ−. Let Y = mC + 1 and X = 3Y + 2. Since A− |= ϕ,
A− has θ-degree at most Y . By Lemmas 5 and 6, we can expand A− to a θ-superchromatic,
X-differentiated structure A over Σ. Observe that Σ has the requisite number of spare unary
predicates. By Lemma 4, A |= ∀x.χ+

θ . By Lemma 7, let S be an X-differentiated shrubbery S of
size at most 5(X · 2|Σ| + 24|Σ|), such that A can be further expanded to a model A+ |= ∆ ∧∆S .
Since ψS has a finite model, FinSat(ψS) has a successful run, and so therefore does FinSatF(ψ).

2.5 Correctness: direction 2

We show that, if the procedure FinSatF(ψ) has a successful run, then ψ has a finite, dendral
model. Recall that, in a finite model A |= ∆0, an element is said to be dendral if it belongs to a
tree-component of the graph (A, tA). Let X be a positive integer. We say that a finite model
A |= ∆0 is X-viable if:

(i) every 1-type realized in A is realized by a dendral element;

(ii) every 1-type realized by more than one element in A is realized by at least X dendral
elements; and

(iii) every arboreal 2-type realized in A is realized by a pair of dendral elements.

Lemma 8. Let A+ be a finite model of ∆ ∧∆S, where S is an X-differentiated shrubbery over
Σ, and let A be the reduct of A+ to Σ. Then A is X-viable.
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Figure 3: Model rewiring

Sketch proof. Write S = (V,E, L), enumerate V as {v0, . . . , v|S|−1}, and let A be the domain
of A+. Since A+ |= ∆S

1 , there exists, for each k (0 ≤ k < |S|), a unique bk ∈ A satisfying p̄〈k〉.
Thus, the map ι : vk 7→ bk is an embedding of V in A. The main idea of the proof is to show
that every element in the image of ι is dendral, making essential use of the formulas ∆, ∆2, ∆3,
∆4, ∆5 and ∆6. The X-viability of A+ then follows almost immediately from ∆S

1 , ∆S
3 , ∆S

7 , ∆S
8

and the assumed X-differentiation of A.

Lemma 9. Let Σ be a signature, θ a quantifier-free, equality-free formula over Σ, and A a
finite, θ-superchromatic structure of θ-degree Y , interpreting Σ. Let X = 3Y + 2, and suppose
A is X-viable and contains at least one t-cycle. Then there exists an X-viable structure A′

interpreting Σ over the same domain, realizing the same 2-types and the same θ-star-types, and
containing fewer t-cycles.

Proof. Let 〈a′, b′〉 be any edge of some t-cycle in A, and let π = tpA[a′], π′ = tpA[b′], and
τ = tpA[a′, b′]. We proceed to break the t-cycle containing a′ and b′, thus rendering all of its
elements dendral. Since A |= t[a′, b′] and t(y, x) is a conjunct in θ, τ−1 is necessarily a θ-ray;
this θ-ray may be invertible or non-invertible.

We consider first the case where τ−1 is non-invertible. Since A is X-viable, π and π′ are
realized more than once in A, and so must be realized at least X times by dendral elements.
Setting B to be the set of dendral elements of 1-type π and B′ the set of dendral elements of
1-type π′, by Lemma 3, there exist dendral elements a, b, such that tpA[a] = π, tpA[b] = π′,
tpA[a, b] is θ-dark, and b′ sends no θ-ray to a. Thus, tpA[a, b′] is either a non-invertible θ-ray-type
or is θ-dark. Indeed, since a is dendral, but b′ is not, tpA[a, b′] is not arboreal. Thus, we may
define the structure A′ to be exactly like A except that

tpA′
[a, b] = tpA[a, b′] tpA′

[a, b′] = tpA[a′, b′]

tpA′
[a′, b′] = tpA[a, b],

as illustrated in Fig. 3a. It is immediate that A′ and A realize the same 2-types, and clear by
inspection of Fig. 3a that the star-type of every element is the same in A′ as in A. On the other
hand, the t-cycle containing a′ and b′ has been broken in A′, and all its elements have become
dendral.

We consider next the case where τ−1—and hence τ = tpA[a′, b′]—is an invertible θ-ray-
type. Since A is X-viable, let a, b be dendral elements such that tpA[a, b] = τ . Since A is
θ-superchromatic, we know that tpA[a, b′] and tpA[a′, b] are θ-dark. In that case, we simply set

tpA′
[a, b] =tpA[a, b′] tpA′

[a, b′] =τ

tpA′
[a′, b] =τ tpA′

[a′, b′] =tpA[a′, b],

as illustrated in Fig. 3b. It is again immediate that A′ and A realize the same 2-types, and clear
by inspection of Fig. 3b that the star-type of every element is the same in A′ as in A. On the
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other hand, the t-cycle containing a′ and b′ has again been broken in A′, and all its elements
have become dendral.

We are now in a position to show that, if the procedure FinSatF(ψ) has a successful run,
then ψ has a finite, dendral model. For suppose S is the shrubbery guessed in the first step:
let A+ be a finite model of ψS , and let A be the reduct of A+ to Σ. Since A+ |= ∆ ∧∆S and
S is, by assumption, (3Y + 2)-differentiated, it follows by Lemma 8 that A is (3Y + 2)-viable.
Since A+ |= ∀x χ+

θ , A is also θ-superchromatic. Now apply Lemma 9 to obtain the structure
A′. Since this process leaves the θ-star-types of elements unchanged, and never causes dendral
elements to become non-dendral, A′ is a θ-superchromatic, (3Y + 2)-viable structure. Thus, we
may continue this process until we obtain a structure A∗ containing no cycles at all. Then A∗ is
the desired dendral model of ψ.

This shows that FinSatF(ψ) yields the correct result. To analyse the running time, let
the multiplicity and ceiling of ψ be m and C, respectively, and let the signature of ψ be Σ.
Examination of the size of the formula ψS then establishes the following lemma.

Lemma 10. Let ψ be a weak normal-form C2[↓]-formula with multiplicity m and ceiling C
over signature Σ. We can non-deterministically compute a C2-formula ψS in weak normal-form
with multiplicity mS and ceiling CS over signature ΣS, such that: (i) ψ has a finite dendral
model if and only if, for some run of the computation, ψS has a finite model; (ii) |ψS | is at
most |ψ| · 2O(|Σ|)(mC)O(1); (iii) mS = m+ 2 and CS = C; (iv) |ΣS | is O(|Σ|+ log(mC)). The
computation of ψS requires time polynomial in |ψS |.

Lemmas 1 and 10 and Theorem 3 imply the first part of Theorem 1.

2.6 Generalization to two forests

The above argument can be unproblematically extended to the logic C2[↓1, ↓2], where two
distinguished predicates, t1 and t2 are, required to be interpreted as forests.

Lemma 11. The finite satisfiability problem for the logic C2[↓1, ↓2] is in NExpTime.

In the proof of this lemma we use the following well-known fact about graph-colouring.

Lemma 12. If G = (A,E) is a directed graph with out-degree m, then the underlying undirected
graph of G has a proper (2m+ 1)-colouring.

Sketch proof of Lemma 11. Here, we sketch the principal differences to C2[↓]. Call any structure
in which the predicates t1 and t2 are interpreted as forests dendral. Given a formula ψ of
C2[↓1, ↓2] in weak normal-form, we again construct a shrubbery together with a C2-formula
ψS = ψ ∧ ∀x χ+

θ ∧∆ ∧∆S , such that ψ has a finite dendral model if and only if ψS has a finite
model. The notion of a shrubbery is modified so that it is the union of two (not necessarily
disjoint) forests. In the case where A has a finite dendral model, a shrubbery is obtained as
a subgraph of the coloured graph (A, tA1 , t

A
2 ), including sufficiently many ordinary edges, and

with any very long connecting strands contracted to special edges. (We now need two types of
special edges: one for each forest.) The formulas ∆ and ∆S are modified in the obvious way. In
particular, the conjunct ∆0 of ∆ states that both t1 and t2 are irreflexive and inverse functional.

The key idea behind the construction, given in Lemma 9, then proceeds almost identically
to the case C2[↓]. The principal difference is that we must remove both t1-cycles and t2-cycles.
Suppose a0, . . . , an−1 is a t1-cycle (again writing an = a0). If, for every i (0 ≤ i < n), either
A |= t2[ai, ai+1] or A |= t2[ai+1, ai], we observe that, since A |= ∆0, the same possibility holds
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for each i. That is, either a0, . . . , an−1 is a t2-cycle or an−1, . . . , a0 is. This means that we
can break both the t1-cycle and the t2-cycle simultaneously at the elements ai and ai+1, using
the argument of Lemma 9, which works unproblematically. If, on the other hand, for any
i (0 ≤ i < n), A 6|= t2[ai, ai+1] and A 6|= t2[ai+1, ai], then we can break the t1-cycle at that
point, taking a′ = ai, b

′ = ai+1 and τ = tpA[a′, b′], again selecting dendral elements to absorb
the relevant t1-ray. We must show that, in doing so, we create no t2-cycles. If tp[b′, a′] is an
invertible θ-ray-type, then we select dendral elements a, b such that tp[a, b] = tp[a′, b′]. By
θ-superchromaticity, tpA′

[a, b′] and tpA′
[a′, b] are θ-dark, and so we may set

tpA′
[a, b] =tpA[a, b′] tpA′

[a, b′] =τ

tpA′
[a′, b] =τ tpA′

[a′, b′] =tpA[a′, b],

exactly as in the argument of Lemma 9 (Fig. 3b).
If, on the other hand, tp[ai+1, ai] = tp[b′, a′] is a non-invertible θ-ray-type, a complication

arises. Following Lemma 9 (Fig. 3a), we wish to select dendral elements a, b such that
tpA[a] = tpA[a′], tpA[b] = tpA[b′], and tpA[a, b] is θ-dark, and set

tpA′
[a, b] = tpA[a, b′] tpA′

[a, b′] = tpA[a′, b′]

tpA′
[a′, b′] = tpA[a, b].

This does indeed have the desired effect of eliminating a t1-cycle without introducing any t2-cycle,
provided b′ is not the t2-mother of a, that is, provided A 6|= t2[b′, a]. This is important, because
b might be a t2-ancestor of a, in which case the assignment tpA′

[a, b] = tpA[a, b′] would create a
t2-loop.

Fortunately, we can easily prevent this situation from arising. Suppose that the C2[↓1, ↓2]-
formula ψ has a dendral model AA, and consider the graph (A,E) where E is the set of
ordered pairs 〈a, c〉 for which there exists b ∈ A such that either A |= t1[c, b] and A |= t2[b, a]
or A |= t2[c, b] and A |= t1[b, a]. Since each node has at most one mother in each forest, this
graph has degree at most 2, and so can be properly 5-coloured by Lemma 12. Now let p1, . . . , p5

be fresh predicates encoding these colours, and let ζ be a two-variable formula saying that the
graph (A,E) is 5-coloured. Then, if ψ is replaced by ψ ∧ ζ, it can never happen that there
is a triple of elements a, b′, a′ with A |= t1[a′, b′], A |= t2[b′, a] and tpA[a′] = tpA[a], and the
construction of Lemma 9 goes through. On the other hand, ψ ∧ ζ has a dendral model if and
only if ψ has, which proves the theorem.

This is the second part of Theorem 1. This argument does not work for three distinguished
predicates t1, t2, and t3. The reason is that a t1-cycle may be composed entirely of t2- and
t3-edges that do not form parts of t2- and t3-cycles. In this case, the swapping construction of
Lemma 9, when used to eliminate a t1 cycle, may create new t2- and t3-cycles. The argument
then fails. It is not known whether the finite satisfiability problem for the logic C2[↓1,· · ·, ↓k] is
decidable for any k ≥ 3; similarly for the satisfiability problem.

3 The general satisfiability problem

The purpose of this section is to prove Theorem 2: the satisfiability problem for C2[↓] is in
NExpTime. We proceed by reduction to the finite satisfiability problem for C2[↓]. For the
remainder of this section, we fix a C2[↓]-formula ϕ in normal form (1) over a signature Σ′,
and let θ be the formula

∨m
h=1 βh ∨ t(y, x). We take Σ to be the signature Σ′ together with
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dlog(2(mC+1)2 +1)e+dlog(3(mC+1))e additional unary predicates. Thus, by Lemmas 5 and 6,
any model of ϕ interpreting Σ′ can be expanded to a θ-super-chromatic, 3(mC+1)-differentiated
model of ϕ interpreting Σ. Henceforth, all 1-types and 2-types are to be understood as 1-types
and 2-types over Σ. Moreover, since the formula θ will not vary, we speak of θ-ray-types, θ-dark
2-types, θ-star-types, θ-chromatic structures etc. simply as ray-types, dark 2-types, star-types,
chromatic structures etc.

Overview of the decision procedure. We reduce the general satisfiability of C2[↓] to its
finite satisfiability. The main idea is to explore regularity in infinite models of C2[↓] formulas.
Elements realizing star-types that occur only finitely often in the model, all their ancestors
in the forest and elements absorbing rays from them are members of a finite “irregular” part
called the initial segment. The remainder of the model is represented as a finite, cyclic graph
of star-types, the star chart. The initial segment and rays connecting its elements with the
remainder constitute a finite structure which is described by a translated C2[↓] formula. The
translation involves reasoning about 1- and 2-types and its size is exponential in the size of
an input formula. However, its effective size is again polynomial, which allows us to use the
decision procedure for finite satisfiability of C2[↓] in the previous section as a black box.

3.1 Star charts

We begin with some technical machinery for reasoning about the star-types realized infinitely
often in models of C2[↓]-formulas. Recall that an arboreal ray-type is one containing either of
the atoms t(x, y) or t(y, x). Because we will be particularly concerned in the sequel with the
directions of t-edges, the following terminology will be useful. If ρ is a ray-type containing the
atom t(x, y), we call ρ Boreal, and if ρ is a non-invertible ray-type containing the atom t(y, x),
then we call ρ Austral. We use the terms Boreal ray and Austral ray in the obvious sense. Note
that, since |= t(y, x)→ θ, Boreal ray-types are necessarily invertible.

If σ is a star-type and ρ an invertible ray-type, we write σ  ρ if σ emits a ray of type ρ,
and ρ σ if σ emits a ray of type ρ−1 (or, as we might say: if σ absorbs a ray of type ρ). If σ
and σ′ are chromatic star-types, then there can be at most one invertible ray-type ρ such that

σ  ρ and ρ σ′. In that case we write σ
ρ−→ σ′. If σ, σ′, σ′′ are chromatic star-types and ρ, ρ′

are distinct invertible ray-types such that σ′′
ρ−→ σ and σ′′

ρ′−→ σ′, we write σ′′ → (σ;σ′). Notice
that, in this case, σ, σ′ and σ′′ must be distinct, by the chromaticity of σ′′. A star chart is a
set Ω of chromatic star-types with the property that, if σ ∈ Ω and σ  ρ for some invertible

ray-type ρ, then there exists σ′ ∈ Ω such that σ
ρ−→ σ′. As we might say: star-charts absorb all

the invertible ray-types they emit. A star-chart may be regarded as a directed graph in the
following way: the vertices are star-types, and the edges are the Boreal ray-types which those
star-types emit or absorb. Notice that the edges of this graph are directed by the predicate
t, not by the directedness of the ray-types: all ray-types labelling the edges of this graph are
Boreal and hence by definition invertible.

Where a star chart Ω is clear from context, we write σ ⇒ σ′ if, for some m ≥ 0, there exists
a sequence σ0, . . . , σm of star-types from Ω and a sequence ρ0, . . . , ρm−1 of Boreal ray-types

such that σ = σ0, σ′ = σm and σi
ρi−→ σi+1 for all i (0 ≤ i < m). Likewise, we write σ V σ′ if

either: (i) σ ⇒ σ′ and σ′ ⇒ σ; or (ii) there exist σ′′, σa, σb ∈ Σ such that σ ⇒ σ′′, σ′′ → (σa;σb),
σa ⇒ σ and σb ⇒ σ′. Thus, while σ ⇒ σ′ states that there is a path in Ω from σ to σ′, σ V σ′

states that there is a path in Ω from σ to itself which proceeds either via σ′, or via some
star-type σ′′ where the path branches to σ′ (Fig. 4).
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σ σ′ σ σ σ′′ σa

σb

σ

σ′

Figure 4: The relation σ V σ′ in a star chart.

Let Ω be a star chart. A trek (through Ω) is a (possibly infinite) Ω-labelled tree T = (V,E, L),
where L : V → Ω is the labelling function, such that, for every vertex v of T : (i) if (v, w) ∈ E,

then there exists a Boreal ray-type ρ such that L(v)
ρ−→ L(w), and (ii) for every Boreal ray-type

ρ emitted by L(v), there exists (v, w) ∈ E such that L(v)
ρ−→ L(w). If T is a trek and σ is the

label of the root of T , we say that the origin of T is σ. Intuitively, a trek through Ω with origin
σ is a tree of the possible routes that can be taken through the star-chart Ω starting at σ. A
labelled tree satisfying only condition (i) is called a partial trek. A union of disjoint treks is
called a multi-trek. Note that, for a star-chart Ω, there may be many treks with origin σ ∈ Ω.
This is because, if ρ is a Boreal ray-type such that σ  ρ, there may be more than one σ′ ∈ Ω
such that ρ  σ′. Thus, we have more than one choice as to how to unfold the trek at this
point, and similarly for the Boreal ray-types emitted by whichever σ′ we choose.

Lemma 13. If Ω is a star chart and σ ∈ Ω, then there exists a trek through Ω with origin σ.
In fact, any partial trek through Ω can be extended to a trek.

Lemma 14. If Ω is a star chart, Ξ′ ⊆ Ω and σ ∈ Ω such that, for all σ′ ∈ Ξ′, σ V σ′, then
there exists a trek T through Ω in which, for every σ′ ∈ Ξ′, there are infinitely many vertices
labelled with σ′.

Lemma 15. Let Ω be a star chart, σ, σ′ ∈ Ω and T a trek through Ω. Suppose B is an infinite
branch of T such that (i) every vertex of B has a descendant in T labelled σ′, and (ii) σ occurs
infinitely often in B. Then σ V σ′.

Lemma 16. Let Ω be a star chart and ρ a Boreal ray-type. Let Ωρ = {σ ∈ Ω | ρ  σ}, and
Ω?
ρ = {σ ∈ Ω | for some σ0 ∈ Ωρ, σ0 V σ}. If Ωρ 6= ∅, then there is a trek T through Ω with

origin σ∗ ∈ Ωρ such that, for all σ ∈ Ω?ρ, T has infinitely many vertices labelled with σ.

3.2 The reduction

With these preliminaries behind us, we present our promised non-deterministic exponential time
Turing reduction of the satisfiability problem for C2[↓] to the finite the satisfiability problem for
C2[↓].

Recall that ϕ is a C2[↓]-formula of the form (1) over a signature Σ′ with multiplicity m and
ceiling C, that θ is the formula

∨m
h=1 βh ∨ t(y, x), and that Σ is the signature of ϕ together

with dlog(2(mC + 1)2 + 1)e + dlog(3(mC + 1))e additional unary predicates. Recall also the
formula χθ stating that a Σ-structure is (θ-) chromatic. Let Ω be a set of star-types and ρ an
invertible ray-type. As in Lemma 16, we write Ωρ for the set of star-types in Ω that absorb a
ray of type ρ. We write Ω◦ for the set of star-types in Ω that absorb no Boreal ray. We write
Inv(Ω) for the set of invertible ray-types absorbed by some star-type in Ω, and Bor(Ω) for the
set of Boreal ray-types absorbed by some star-type in Ω. Thus, Bor(Ω) ⊆ Inv(Ω). Finally, we
write tp(Ω) to denote the set {tp(σ) | σ ∈ Ω} of 1-types of the star-types in Ω. A parameter set
for ϕ is a tuple X = 〈Ω,Ξ,ΠS ,ΠN 〉, where Ω is a star chart, Ξ ⊆ Ω \ Ω◦, and ΠS , ΠN , disjoint
sets of 1-types, satisfying the following conditions:
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(I1) for all σ ∈ Ω, either there exists σ0 ∈ Ω◦ such that σ0 ⇒ σ, or there exists σ0 ∈ Ξ such
that σ0 V σ;

(I2) if σ ∈ Ω and σ  ρ, then tp2(ρ) ∈ ΠN ∪ΠS ;

(I3) tp(Ω) ⊆ ΠN ;

(I4) if σ ∈ Ω and π ∈ ΠS , then σ emits at most one ray with absorption type π;

(I5) for all σ ∈ Ω and all π ∈ ΠS , either σ emits a non-invertible ray with absorption type π or
there exists a dark 2-type τ , compatible with ϕ, such that τ includes both tp(σ) and π(y);

(I6) Every star-type in Ω is compatible with ϕ ∧∆0 (and in particular emits at most one ray
containing the atom t(y, x)).

By way of motivation, it helps to think of the various components of a parameter set in
terms of a putative model A |= ϕ. Here, Ω is the star-chart consisting of those star-types that
are realized infinitely often in A, while ΠS and ΠN are the sets of 1-types realized, respectively,
uniquely and more than once, in A. The construction of Ξ is more complicated; however, the
idea can be explained roughly as follows. Consider the graph G = (A, tA). Now consider the
subgraph H of G obtained by removing a certain finite initial segment containing all elements
whose star-types are realized only finitely many times, and then dropping all Austral rays
(i.e. retaining only the Boreal rays). Thus, H is also a forest—which we might call the Boreal
forest of A—every component of which is therefore a tree. Note that H may have infinitely
many components. The initial segment is chosen in such a way that all star-types realized by
the elements of H are realized infinitely often in A. Of particular interest, however, are those
star-types which are realized infinitely often in A, but in only finitely many components of H:
these will need special treatment in our construction. The star-types in Ξ are the roots of these
finitely many components of H.

We will be working with the signature Σ of ϕ together with a fresh unary predicate init. If
A is a structure interpreting Σ ∪ {init}, we call the set initA ⊆ A the initial segment, and we
call any ray from an element in the initial segment to an element outside the initial segment
a frontier ray. Let X = 〈Ω,Ξ,ΠS ,ΠN 〉 be a parameter set for ϕ, then. We define a formula
ϕX := χθ ∧ ψ0 ∧ · · · ∧ ψ7 over the signature Σ ∪ {init}, where χθ is as in Lemma 4, and ψ0–ψ7,
may be glossed in English as follows.

ψ0: Every realized 2-type is compatible with ϕ, and every star-type realized by an element of
the initial segment is compatible with ϕ.

ψ1: For every ρ ∈ Bor(Ξ), there is a frontier ray of this type.

ψ2: The star-types in Ω are able to absorb all the invertible frontier rays.

ψ3: If 〈a, b〉 satisfy t and b is in the initial segment, then so is a.

ψ4: Every 1-type in ΠS is uniquely realized and is realized in the initial segment.

ψ5: Every 1-type in ΠN is realized at least 3(mC + 1) times in the initial segment.

ψ6: Elements realizing 1-types in ΠS do not emit frontier rays.

ψ7: The 1-type of any element outside the initial segment is consistent with some star-type
in Ω.

We then prove a pair of matching lemmas showing that ϕ is satisfiable if and only if there is a
parameter set X such that ϕX is finitely satisfiable.
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A0A0

TT ∗σ0 ∈ Ω◦

Tσ

Boreal frontier rays
privileged rays

Tρ Ta,a′

Figure 5: Constructing a model B of ϕ from a finite model of ϕX (Lemma 17).

Lemma 17. Let X be a parameter set for ϕ. If ϕX has a finite dendral model, then ϕ has a
dendral model.

Proof idea. Suppose A+ is a finite dendral model of ϕX , where X = 〈Ω,Ξ,ΠS ,ΠN 〉. We build a
structure B over a domain consisting of the initial segment A0 of A+ together with the vertex-set
V of an infinite multi-trek T through Ω. To construct T , we take all star types σ ∈ Ω and
build treks originating with star-types σ0 (whose existence is guaranteed by condition (I1)) that
either do not absorb Boreal rays (and thus come from Ω0) or do absorb a Boreal ray (and thus
come from Ξ). The former lead to the multi-trek T ∗ in Fig. 5. The latter, by formula ψ1, are
connected by Boreal frontier rays to the initial segment. We call these rays privileged; they lead
to treks Tρ in Fig. 5. The conditions (I1)–(I6) and the conjuncts ψ0–ψ7 ensure that the rest
of the model B can be built. In particular, for all remaining Boreal frontier rays we are able
to take the emitting node a, add a fresh node a′ to V and construct a trek Ta,a′ . Over A0, B
is the Σ-reduct of A+, and thus 1-types of elements and 2-types of element pairs in A0 are all
defined. Over V , we define B in such a way that elements realize the star-types with which
they are labelled in the multi-trek. In particular, condition (I1) ensures that every star type
σ ∈ Ω is indeed realized infinitely often in B, as it is realized in T ∗ or in Tρ, for some Boreal
ray ρ. This allows to establish the required invertible (non-arboreal) ray-types between elements
of T and invertible (both Boreal and non-arboreal) ray-types between elements of A0 and T .
Austral ray-types between T and A0 are all originating in T ∗ and can be assigned an absorbtion
site in A0, as every 1-type in ΠS ∪ΠN is realized there. Non-invertible non-arboreal ray-types
between A0 and T can be set using the well-known cyclic construction. The remaining pairs of
elements of B can be assigned dark 2-types. All 2-types assigned as well as star-types of B are
compatible with ϕ.

Lemma 18. If ϕ has a dendral model, then there exists a parameter set X such that ϕX has a
finite, dendral model.

Proof idea. Suppose A is a dendral model of ϕ. We select a finite subset A0 consisting (roughly)
of those elements of A whose star-types are realized only finitely often, together with all their
ancestors in the graph (A, tA). This subset is the initial segment of the constructed model B.
Let Ω be the set of star-types realized infinitely often in A. We define Ξ to be the set of those
star-types in Ω that connect elements of A \A0 with elements of A0 by Boreal ray-types. If Ξ

230



Two-variable Logic with Counting in Forests W. Charatonik, Y. Guskov, I. Pratt-Hartmann, P. Witkowski

defined in this way does not satisfy (I1), we recover this property by an appropriate expansion
of A0. Let ΠS and ΠN be the sets of 1-types realized in A, respectively, once and more than
once. We put X = 〈Ω,Ξ,ΠS ,ΠN 〉. We then build a finite dendral model B of ϕX over a domain
consisting of A0 together with finitely many representatives of the star-types in Ω.

Lemma 19. Let X be a parameter set for ϕ. If ϕX has a finite dendral model, then there exists
a parameter set X ′ such that ϕX′ = ϕX and X ′ is exponential in |ϕ|.

Proof idea. Let X = 〈Ω,Ξ,ΠS ,ΠN 〉. We begin with some definitions. A junction is any star-
type λ such that 1) there are at most four θ-ray-types ρ such that λ ρ, 2) among them there
are at most two Boreal ray-types, at most one ray-type whose inverse is a Boreal ray-type and at
most one other (i.e. non-arboreal) invertible ray-type. A junction is intended to represent some
selected subset of information that an ordinary star-type captures. The information in question
concerns: (i) an invertible ray-type connecting a node to its mother in a tree (a type whose
inverse is a Boreal ray-type), provided that the mother exists, (ii) Boreal ray-types connecting
the node to one or two of its daughters, and (iii) a ray-type connecting the node to another
node in the structure. If σ is any star-type compatible with ϕ and λ is a junction, we say that σ
is an expansion of λ if 1) for every ρ such that λ ρ we have σ  ρ and 2) if σ  τ where τ−1

is a Boreal θ-ray-type then λ τ . Note that there are at most exponentially many junctions
over Σ, in contrast to the number of ordinary star-types compatible with ϕ, which is doubly
exponential in |ϕ|.

If λ is a junction and Ψ is a set of star-types, define Ψλ = {σ ∈ Ψ | σ is an expansion of λ}.
Recalling now the sets of star-types Ξ and Ω featured in X, from each non-empty Ξλ, where
λ is a junction, select one representative and define Ξ′ as the set of all these representatives
(as λ varies over all junctions); similarly, from each non-empty Ωλ select one representative
and and define Ω′ as the set consisting of all these representatives and of all elements of Ξ′.
Define X ′ = 〈Ω′,Ξ′,ΠS ,ΠN 〉. As there are exponentially many junctions, both Ω′ and Ξ′ are
exponential in |ϕ|. Thus X ′ is also exponential in |ϕ|. It is a routine to show that X ′ is a
parameter set and ϕX′ = ϕX .

This yields the sought-after procedure, SatF(ϕ), for determining the satisfiability of a
normal-form C2[↓]-formula ϕ. The procedure SatF(ϕ) consists of two steps:

1. Non-deterministically guess a parameter set X of size exponential in |ϕ|, and compute the
formula ϕX in weak normal form.

2. Run FinSatF(ϕX) and report the result.

Recall that multiplicity of ϕ is m and ceiling of ϕ is C. Examination of the construction of ϕX
establishes:

Lemma 20. We can non-deterministically compute a C2[↓]-formula ϕX in weak normal-form
with multiplicity m and ceiling C over a signature ΣX , such that: (i) ϕ has a dendral model
if and only if, for some run of the computation, ϕX has a finite dendral model; (ii) |ϕX | is
O
(
|ϕ| · |Σ| · 2O(|Σ|)); (iii) |ΣX | is O(|Σ| + log(mC)). The computation of ϕX requires time

polynomial in |ϕX |.

Lemmas 1, 10, 19, 20 and Theorem 3 imply Theorem 2.
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[5] E. Grädel, P. Kolaitis, and M. Vardi. On the decision problem for two-variable first-order logic.
Bulletin of Symbolic Logic, 3(1):53–69, 1997.
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