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Abstract

Web applications (webapps) are very popular because they are easy to prototype and they can invoke other external
webapps, supplied by third parties, as building blocks. Yet, writing correct webapps is complex because develop-
ers are required to reason about distributed computation and to write code using heterogeneous languages, often not
originally designed with distributed computing in mind. Testing is the common way to catch bugs as current tech-
nologies provide limited support. There are doubts this can scale up to meet the expectations of more sophisticated
web applications. In this paper, we propose an abstraction that provides simple primitives to manage the two main
forms of distributed computation found on the web: remote procedure calls (code executed on a server on behalf of a
client) and mobile code (server code executed on a client). We embody this abstraction in a type-safe language with
localized static typechecking that we call QWeS2T and for which we have implemented a working prototype. We use
it to express interaction patterns commonly found on the Web as well as more sophisticated forms that are beyond
current web technologies.

1 Introduction
Web-based applications, also called webapps, are networked applications that use technologies that emerged from
the Web. They range from simple browser centric web pages to rich Internet applications such as Google Docs to
browserless server-to-server SOAP-based web services. They make use of two characteristic mechanisms: remote
execution by which a client can invoke computation on a remote server, and mobile code by which server code is
sent to a client and executed there. Furthermore, communication happens over the HTTP protocol. Webapps are very
popular for two main reasons. From the user’s perspective, they are easy to deploy on clients: there is no need to
install a third party program on the end-user’s platform since everything happens through the web browser. From the
developer’s perspective, it is very easy to build a rich graphical user interface by using HTML, JavaScript and other
web-based technologies. Moreover, developers can use external third-party web services as building blocks for their
webapps (obtaining what is called a mashup). So, webapps are very easy to prototype, yet web programmers know
that development gets much more complex as the application grows. Indeed, it is very hard to ensure correctness (and
security) when developing and maintaining large scale webapps.

Two factors contribute to this complexity. First, web application developers are required to reason about distributed
computation, which is intrinsically hard: they must ensure adequate interaction between the code executed on the client
and the code executed on the server — and it gets more complicated when additional hosts are involved. Second,
typical webapp development orchestrates a multitude of heterogeneous languages: the client side code is often written
in HTML and JavaScript which are the standards implemented by all browsers, and the server side can be written in
any language, common choices being PHP, Java, ASP/.NET and Python. This disjointness of technologies ensures
that implementations are platform independent and increases interoperability. However, now the developer must make
sure that code written in different languages will be correctly interfaced and work well together. In particular, data
must be used consistently across language boundaries: typechecking becomes heterogeneous and possibly distributed
when making calls to third-party web applications.

Until recently, web developers had few options besides extensive testing, an expensive proposition that does not
scale. Approaches to provide static assurance are nowadays emerging. The now standard way to develop code that
will interface with a remote application is to program it against an API that lists the provided functionalities and their
type. This is natively supported in Java once the API has been copied locally (but APIs can change unexpectedly
on the Web). Language extensions that verify the correctness of service orchestration have also been proposed, for
example ServiceJ [6] which augments the type system of Java to take remote functions into account at compile time.
Additionally, standards have been proposed to ensure adequate interactions between different services, for example
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WSDL [19] declares the type interface of a service and BPEL [13] describes how services can be combined. However,
these standards are not always implemented by web service platforms and web service programming frameworks.
One common aspect of all these technologies is that they patch preexisting languages to permit web programming,
which helps reasoning about a webapp as a distributed computation only up to a certain point. Instead, we propose to
a language designed around the distributed nature of a web application. A complementary approach that specifically
targets client-server applications is to develop them in a homogeneous language and then to compile them to the
heterogeneous languages of the Web (in particular HTML and JavaScript on the client). In this way, type mismatches
between client and server code are caught at compile time (rather than at execution time). One example is Google’s
Web Toolkit [8] where webapps are written entirely in Java. Another is Links [5]. One drawback with this approach
is that the code is compiled statically into client and server roles, which makes it difficult to use to install services
dynamically on a third-party host.

In this paper, we present an abstraction of web development that highlights its distinguishing features, remote code
execution and mobile code. We realize this abstraction into a programming language skeleton designed with web
applications in mind. This language, that we call QWeS2T, supports remote execution through primitives that allow
a server to publish a service and a client to call it as a remote procedure. It also embeds mobile code as a form of
suspended computation that can be exchanged between nodes in the network. QWeS2T is strongly typed and supports
decentralized type-checking. We show that it is type-safe and we use it to implement, in a few lines, web interactions
going from simple web page publishing to complex applications that create services dynamically and install them on
third party servers. We have developed a prototype implementation of QWeS2T.

The main contributions of this work are 1) the definition of a simple language that succinctly and naturally captures
the principal constructs found in web programming; 2) the design of a type-safe language supporting a localized form
of typechecking; and 3) an abstraction that allows specifying easily web interaction patterns that are difficult to achieve
using current technologies. We do not see QWeS2T as a replacement for existing languages for web programming,
but as a simple experimental framework that facilitates exploring formally ideas about web programming. Indeed, we
designed it as a stepping stone to study security mechanisms (specifically information flow) for web programming.

This paper is structured as follows: Section 2 lays out some operating assumptions for QWeS2T, defines its syntax
and semantics, and shows that it is type-safe. In Section 3, we use it to express some standard and some rather
advanced web development efforts. Section 4 describes our prototype implementation while in Section 5 we review
related work in the literature. We conclude in Section 6 with an outline of future developments.

2 A Language for Programming the Web
The goal of this paper is to propose a type-safe programming language for web development. This section describes
this language, QWeS2T, and establishes its properties. We begin by laying out the architecture of our intended system
and the requirements that our design wants to address in Section 2.1. For the sake of clarity, we then introduce QWeS2T
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in stages: Section 2.2 illustrates the formal setup used in this paper on a handful of traditional constructs that we will
use as our base language; Section 2.3 extends it with support for mobile code, which in turn Section 2.4 augments
with constructs that enable remote code execution. We conclude in Section 2.5 with a metatheoretic investigation of
the properties of QWeS2T, which culminates in a distributed safety result.

2.1 Localized Computation

We consider a model of networked computation consisting of a fixed but arbitrary number of hosts, denoted w possibly
subscripted (we also call them worlds or nodes). These hosts are capable of computation and are all equal, in the sense
that we do not a priori classify them as clients or servers (instead, we use these terms based on their pattern of
communication). They communicate exclusively through web services, which can be seen as a restricted form of
message passing (each request is expected to result in a response). Since we are less interested in the communication
resources (channels and messages) than on the computation performed at the various nodes, we do not need to rely on
the machinery of traditional process algebras such as the π-calculus [16]. Our model is not concerned either with the
topology of the network: indeed, just like we normally view the Web, we assume that every node can invoke services
(including humble web pages) from every other node that publishes them. In this paper, we do not address any security
or information flow issues (see Section 6).

The design of QWeS2T espouses a node centric view of web programming, which to a large extent matches current
development practices. Computation happens locally with occasional invocations of remote services. This intuition is
depicted on the right-hand side of Figure 1: from node w’s stance, it is executing a local program e and has access to a
set of services ∆ available on the Web, with each node wi providing a subset Ωi of these services. This will translate
in an evaluation judgment ∆ ; e 7→w ∆′ ; e′ localized at node w, where each step of the computation of e with respect
to ∆ will yield a new expression and possibly extend ∆ with a new service.

We want QWeS2T to be globally type-safe and support localized type-checking. “Globally type-safe” means that
if every service on the network is well-typed with respect to both its own declarations and any other web service it may
invoke, then execution will never go wrong. “Local type-checking” implies that each node w will be able to statically
verify any locally written program e by itself as long as it knows the correct types of the remote services it uses. This
is illustrated on the left-hand side of Figure 1: the API of the services (of interest to w) on the Web is represented as
Σ, while Γ and τ are the typing context and type of the expression e. In the following, this localized static form of
typechecking will be captured by the typing judgment Σ | Γ `w e : τ . The idea of localization, both for typing and
evaluation, is inspired by Lambda 5 [10, 11], a programming language for distributed computing.

2.2 Base Language

The interesting features of QWeS2T are mobile and remote code, discussed in Sections 2.3 and 2.4, respectively. We
will introduce them as extensions of a base language, which we call L. The exact ingredients of this base language are
unimportant for the overall discussion, as long as they interact nicely enough with mobility and remote code execution
so that the overall language can be proved type safe. Therefore, for the sake of brevity, we choose L to be a very
simple language featuring just functions, products and the unit type, with their usual constructors and destructors, as
well as a fixed point operator. We do not foresee any difficulty in extending it with other common constructs. The
syntax of L is summarized in the following grammar:

Types τ ::= τ → τ ′ | τ × τ ′ | unit

Expressions e ::= x | λx : τ. e | e1 e2 | fix x : τ.e
| 〈e1, e2〉 | fst e | snd e | ()

Local typing context Γ ::= · | Γ, x : τ

Here, x ranges over variables. As usual, we identify terms that differ only in the name of their bound variables and
write [e/x]e′ for the capture-avoiding substitution of e for x in the expression e′. Contexts (and similar collections
that will be introduced shortly) are treated as multisets and we requires variables to be declared at most once in them
— our rules will rely on implicit α-renaming to ensure this.
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Σ | Γ, x : τ `w x : τ
of var

Σ | Γ, x : τ `w e : τ ′

Σ | Γ `w λx : τ. e : τ → τ ′
of lam

Σ | Γ `w e1 : τ ′ → τ Σ | Γ `w e2 : τ ′

Σ | Γ `w e1 e2 : τ
of app

Σ | Γ, x : τ `w e : τ

Σ | Γ `w fix x : τ.e : τ
of fix

Σ | Γ `w e1 : τ Σ | Γ `w e2 : τ ′

Σ | Γ `w 〈e1, e2〉 : τ × τ ′
of pair

Σ | Γ `w e : τ × τ ′

Σ | Γ `w fst e : τ
of fst

Σ | Γ `w e : τ × τ ′

Σ | Γ `w snd e : τ ′
of snd

Σ | Γ `w () : unit
of unit

Figure 2: Typing Rules for L

In preparation for our extension, we localize both the static and dynamic semantics of L at a world w, which
represents the computing node where an expression will be typechecked or evaluated. In addition to a traditional
context Γ for local variables, we equip the typing judgment with a global service typing table, written Σ, which we
can safely assume to be empty for the time being. Therefore, the typing judgment assumes the following form:

Σ | Γ `w e : τ “e has type τ in w with respect to Σ and Γ”

The typing rules for this judgment are displayed in Figure 2. Notice in particular, that, apart from the presence of a
world w and a service typing table Σ, these rules are completely standard. Notice also that neither w nor Σ changes in
this figure — indeed they play no role in L, besides setting the stage for the extensions.

For the same reason, we localize the dynamic semantics of L at a given world, w, and consider an evaluation
configuration consisting of the expression e to be evaluated together with a global repository ∆ that lists all the
available services in the network. For the time being, we can safely assume that ∆ too is empty. We describe
evaluation in L using a standard small-step transition semantics with judgments

e val “e is a value”
∆ ; e 7→w ∆′ ; e′ “∆; e transitions to ∆′; e′ in one step”

The rules for these judgments are displayed in the upper and lower parts of Figure 3, respectively. It is easy to see that,
just as for the static semantics, the service repository ∆ never changes. Aside from the repositories, these are textbook
rules for the constructs in this language.

2.3 Mobile Code
Web developers use JavaScript code for two main reasons: 1) to call a remote service (through AJAX requests, for
example) and process the result on the client side; 2) to interact with the user. This code is embedded in a web page
provided by a web server, but it is executed by the web browser on the client’s machine. This is what we intend by
mobile code: a program that resides on a server, that will be transferred and executed on the client. There is a strict
distinction between the code that provides a service on the server side (e.g., a database search) and the code that will
call this service and process the result on the client side. From a developer’s perspective, this distinction may take the
form of having to switch between two programming languages (e.g., JavaScript for the client and PHP for the server)
and insert this code appropriately in the page (for instance JavaScript code can be placed between HTML <script>
tags and within specific HTML attributes). Dynamically generated web pages significantly complicate this picture as
server code (e.g., PHP) and mobile code (JavaScript) as well various layout and styling markups (HTML and CCS)
intended for the client are mixed in the same body of code.

As we mentioned in the introduction, ensuring correctness between client-side code and server-side code is hard.
Some programming languages (such as Links [5] and Google Web Toolkit [8]) permit writing client-side code and
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() val
val unit

λx : τ. e val
val lam

e1 val e2 val

〈e1, e2〉 val
val pair

∆ ; e1 7→w ∆′ ; e′1
∆ ; e1 e2 7→w ∆′ ; e′1 e2

step app1

v1 val ∆ ; e2 7→w ∆′ ; e′2
∆ ; v1 e2 7→w ∆′ ; v1 e

′
2

step app2

v2 val

∆ ; (λx : τ. e) v2 7→w ∆ ; [v2/x] e
step app3

∆ ; fix x : τ.e 7→w ∆ ; [fix x : τ.e/x] e
step fix

∆ ; e1 7→w ∆′ ; e′1
∆ ; 〈e1, e2〉 7→w ∆′ ; 〈e′1, e2〉

step pair1

v1 val ∆ ; e2 7→w ∆′ ; e′2
∆ ; 〈v1, e2〉 7→w ∆′ ; 〈v1, e

′
2〉

step pair2

∆ ; e 7→w ∆′ ; e′

∆ ; fst e 7→w ∆′ ; fst e′
step fst1

v1 val v2 val

∆ ; fst 〈v1, v2〉 7→w ∆ ; v1

step fst2

∆ ; e 7→w ∆′ ; e′

∆ ; snd e 7→w ∆′ ; snd e′
step snd1

v1 val v2 val

∆ ; snd 〈v1, v2〉 7→w ∆ ; v2

step snd2

Figure 3: Evaluation Rules for L

server-side code in the same formalism, allowing type mismatches to be caught at compile time. With Links for
instance, the developers tag segments of code as “client” or “server” to specify where it is to be executed.

In this section, we extend our base language L to a language Lm that is in a sense “mobile code ready”. While
remote code execution in Section 2.4 will provide the mechanism to actually move code from one world to another
(among other things), Lm embeds support for freezing expressions thereby preventing their evaluation, and for forcing
execution in a controlled way. Once the transport mechanism is in place in Section 2.4, this will permit packaging
mobile code on a server but evaluating it only when it reaches the client. For example, code that does machine-specific
initialization on a web page (e.g., looking up the local time or a cookie) will reside in frozen form on the web server,
and its execution will be triggered only when it reaches the client.

To realize this, we borrow from the concept of suspension in the theory of lazy programming languages. Specif-
ically, we understand mobile code as expressions whose evaluation has been suspended and tag them with the type
susp[τ ], where τ is the type of the original expression. The types τ and susp[τ ] are mediated by two basic constructs:
hold e suspends the evaluation of e and resume e′ resumes the computation of a previously suspended expression e′.
Therefore, the language Lm is obtained by extending the syntax of L as follows:

Types τ ::= · · · | susp[τ ]

Expressions e ::= · · · | hold e | resume e

Although hold e suspends a computation, the standard definitions governing free and bound variables still apply. In
particular, substitution traverses hold e just like any other expression.

The static and dynamic semantics of Lm extend the corresponding rule sets for L as displayed in the top and
bottom parts of Figure 4, respectively. We shall point out that, just as in L, the world w and the service tables Σ, ∆
and ∆′ play no role in Lm. Indeed, were we to erase them, we would have a standard language with suspensions for
single-node computing: everything is still happening locally.

2.4 Remote Code
The notion of web service is no more than a modern reincarnation of remote procedure calls (RPC) over the HTTP
protocol. A web service can take several forms: it can be a simple web page (or AJAX) request that the client invokes
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· · ·
Σ | Γ `w e : τ

Σ | Γ `w hold e : susp[τ ]
of hold

Σ | Γ `w e : susp[τ ]

Σ | Γ `w resume e : τ
of resume

· · · hold e val
val hold

· · ·
∆ ; e 7→w ∆′ ; e′

∆ ; resume e 7→w ∆′ ; resume e′
step resume1

∆ ; resume (hold e) 7→w ∆ ; e
step resume2

Figure 4: Additional Typing and Evaluation Rules for Lm

with POST/GET arguments, or it can be an RPC/SOAP request with a specific SOAP envelope format to pass the
arguments. We abstract these various forms of service into what we call remote code, functions that resides on a
remote server and that the client can invoke by sending a message carrying the arguments to be passed to this function.
This function is executed on the server side and only the result is returned to the client.

We capture the notion of web service by extending Lm into a language that we call QWeS2T. To understand this
extension, consider the constructs that must be available to a client and to a server. When a client interacts with a
service, only two pieces of information are needed: 1) the address of this service (its URL), and 2) the type (or format)
of the arguments that must be supplied together with the type of the result to be returned. Just as on the Web, we model
a URL as a two-part locator consisting of the name of the server that provides it, say w′, and of a unique identifier,
u. We write it as url(w′, u). We introduce the type srv[τ ][τ ′] to describe a remote service that expects arguments of
type τ and will return a result of type τ ′. A client w invokes a web service by calling the URL that identifies it with an
argument of the appropriate type. This is achieved by means of the construct call e1 with e2 which is akin to function
application. It calls the URL e1 by moving the value of the argument e2 to where the remote code resides. There,
the corresponding function is executed and the result is moved back to the client. Before a service can be called, a
server w′ must have created it. Our language models this by means of the operator publish x : τ.e which publishes the
function e that takes an argument x of type τ and returns a result of type τ ′. The result is the symbolic URL url(w′, u)
of type srv[τ ][τ ′], for some new identifier u. These ingredients, which constitute the core of the extension of Lm to
QWeS2T are collected in the following grammar:

Types τ ::= · · · | srv[τ ][τ ′]

Expressions e ::= · · · | url(w, u) | publish x : τ.e | call e1 with e2 | expect e from w

The expression expect e from w is used internally during evaluation and is not available to the programmer. It essen-
tially models the client’s awaiting for the result of a web service call. We will examine how it works in more detail
below.

With the definition of QWeS2T, our goal is to obtain a type-safe language for web programming. Just as in
Links [5] and GWT [8], we want to be able to statically typecheck expressions to be evaluated and moreover we want
each node on the network to be able to do so locally, without relying on other nodes. We achieve this by taking full
advantage of our localized typing judgment, Σ | Γ `w e : τ . To do so, we abstractly define the service typing table Σ
as a multiset listing the type and location of all web services available on the network:

Service typing table Σ ::= · | Σ, u : srv[τ ][τ ] @ w

Of course no such thing exists in the reality of web development. We view it as an abstraction that can be safely
approximated in a number of ways, including what is done in current practice. We will come back to this later.

Before we examine the added typing rules of QWeS2T, we need to take some precautions against unintended code
execution. As mentioned above, current practice relies on different languages executing on the client (e.g., JavaScript
or Flash) and the server (PHP, Perl, or pretty much anything). So, while invoking a web service with integers or
other traditional types of data is fine, invoking it with a functional argument raises eyebrows, and similarly for the
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unit mobile
mobile unit

τ mobile τ ′ mobile
τ × τ ′ mobile

mobile product

susp[τ ] mobile
mobile susp

τ mobile τ ′ mobile
srv[τ ][τ ′] mobile

mobile service

Figure 5: Mobile Types

return value. As done in Lambda 5 [10, 11], we will disallow remote procedures whose argument or return type is
functional. Said this, functions are swapped all the time from servers to clients (and more rarely vice versa) in the form
of JavaScript code provided by the server and to be executed by the client. We account for this by means of the mobile
computation mechanism introduced in Section 2.3: we allow suspended computations to be part of a web service
exchange, that is we force a function of type τ → τ ′ to be packaged as a suspension (yielding the type susp[τ → τ ′])
before being shipped around. This mechanism prevents arbitrary code from being moved and installed without the
consent of the client or server. Just as in Lambda 5 [10, 11], we define the following judgment,

τ mobile “τ is a mobile type”

to describe the types whose values can be transmitted between nodes. The rules implementing it are displayed in Fig-
ure 5. They hereditarily disqualify any function type unless protected by a suspension. Notice again that a suspended
computation is mobile, which matches the way the Web works. When a web page contains a script tag with a source
file, this file is transferred over HTTP in the same way that a web page is transferred. So, transferring a script works
similarly to calling a service that will return the script. In the same way, the result of a service can be a URL itself.
This is also consistent with the fact that calling a web page can return a page with a link to another page.

The typing rules for QWeS2T are displayed in the upper part of Figure 6. The rules for publishing and calling a
web service are unsurprising. The other two rules refer to a world w′ different from where the expression is located. As
we said, expect e from w is an artifact of our evaluation semantics, and therefore plays a role only in our metatheoretic
analysis: it cannot appear in a legal program. Rule of url deserves a longer discussion. It checks the type of a URL
occurring in a program by looking it up in the global service typing table Σ, which by definition is not local. As
mentioned earlier, Σ is an abstraction that is or could be realized in a variety of ways in practice:

• At development time, a programmer often simply downloads the API of a web service library, thereby locally
caching the typing specifications of the services of interest.

• At compile time, the client system asks the remote server for the type of each service the local code uses. This
is the approach implemented in our prototype (see Section 4). This mechanism is similar to typechecking a web
service according to its WSDL file.

• A third-party web service server acts as a repository of all web services of interest in the network and answers
typing inquiries similar to the way a DNS works.

Notice that in all three cases, the client must trust the typing information provided or returned by the web server or the
repository. We do not address issues of trust in this paper.

In order to describe the dynamic semantics of QWeS2T, we need first to populate the multiset ∆ we assumed
empty up to now. Each node wi in the network has a local service repository {Ω}wi

which contains the identifier and
the code of all web services published by wi. Then, the global service repository ∆ just denotes the collection of all
such local service repositories. They are defined by the following grammar:

Local service repository Ω ::= · | Ω, u ↪→ x : τ.e

Global service repository ∆ ::= {Ω}w | ∆, {Ω}w

Here, both Ω and ∆ are multisets.
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· · ·
srv[τ ][τ ′] mobile

Σ, u : srv[τ ][τ ′] @ w′ | Γ `w url(w′, u) : srv[τ ][τ ′]
of url

srv[τ ][τ ′] mobile Σ | Γ, x : τ `w e : τ ′

Σ | Γ `w publish τ : x.e : srv[τ ][τ ′]
of publish

Σ | Γ `w e1 : srv[τ ][τ ′] Σ | Γ `w e2 : τ

Σ | Γ `w call e1 with e2 : τ ′
of call

Σ | Γ `w′ e : τ

Σ | Γ `w expect e from w′ : τ
of expect

· · · url(w′, u) val
val url

· · · ∆, {Ω}w ; publish x : τ.e 7→w ∆, {Ω, u ↪→ x : τ.e}w ; url(w, u)
step publish

∆ ; e1 7→w ∆′ ; e′1
∆ ; call e1 with e2 7→w ∆′ ; call e′1 with e2

step call1

v1 val ∆ ; e2 7→w ∆′ ; e′2
∆ ; call v1 with e2 7→w ∆′ ; call v1 with e′2

step call2

v2 val

∆, {Ω, u ↪→ x : τ.e}w′︸ ︷︷ ︸
∆′

; call url(w′, u) with v2 7→w ∆′ ; expect [v2/x] e from w′
step call3

∆ ; e 7→w′ ∆′ ; e′

∆ ; expect e from w′ 7→w ∆′ ; expect e′ from w′
step expect1

v val
∆ ; expect v from w′ 7→w ∆ ; v

step expect2

Figure 6: Additional Typing and Evaluation Rules for QWeS2T

The dynamic semantics of QWeS2T is given in the lower part of Figure 6 as an extension of the rules for Lm. The
only new form of values are URL’s. The evaluation of publish x : τ.e immediately publishes its argument as a web
service in the local repository {Ω}w, creating a new unique identifier for it and returning the corresponding URL. To
call a web service, we first reduce its first argument to a URL, its second argument to a value, and then carry out the
remote invocation which is modeled using the internal construct expect [v2/x]e from w′. This implements the client’s
inactivity while awaiting for the server w′ to evaluate [v2/x]e to a value. This is done in rules step expect1 and
step expect2: the former performs one step of computation on the server w′ while the client w is essentially waiting.
Once this expression has been fully evaluated, the latter rule kicks in and delivers the result to the client.

The dynamic semantic of QWeS2T supports a view of computation on the Web that is centered around the local
host: indeed the conclusion of each rule refers to the same node, w, and it is only when calling a remote service that the
computation migrates to a different node (w′ in the premise of rule step expect1), while w is waiting. Furthermore,
our presentation gives w the illusion that at any time computation happens in exactly one node on the network, either
locally or at the remote server that is servicing a call — this is the same illusion that we normally have while surfing the
Web: Google does nothing else than waiting for my searches. The rules in Figure 6 allow for slightly more complex
patterns of execution, since a web service can call another one that can call another one and so on, and any of these
could reside on the host that made the original call. For how compelling this illusion may be, this is not the way
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· ` ·
st ·

Σ ` ∆
Σ ` ∆, {·}w

st empty
Σ ` ∆, {Ω}w Σ | x : τ `w e : τ ′

Σ, u : srv[τ ][τ ′] @ w ` ∆, {Ω, u ↪→ x : τ.e}w
st nonempty

Figure 7: Typing Rules for Service Repositories

the Web works: all kinds of computations are happening in parallel on every node. It is relatively easy to extend the
presentation in Figure 6 to model this behavior, but this is beyond the scope of this paper. With a presentation that
supports parallel execution, it is then possible with moderate effort to extend QWeS2T with constructs that support
another feature of web services: asynchrony (this is the first “A” in “AJAX”). Again, this is beyond the scope of this
work.

When investigating the metatheory of QWeS2T in Section 2.5, it will be useful to know that the types listed for the
services in the table Σ do indeed correspond to the actual types of the services present in the distributed repository ∆.
We express this requirement by means of the following judgment,

Σ ` ∆ “the services in ∆ are well-type with respect to Σ”

whose rules are shown in Figure 7. These rules go systematically through all the declarations in Σ, find the corre-
sponding implementation in ∆, and check that it is well-typed with respect to the rest of Σ. A few observations about
these rules are in order.

First, note that once a web service u has been typechecked in rule st nonempty the remaining services are checked
in a typing table that does not mention u any more. This immediately entails that QWeS2T does not support recursive
web services (at this stage). Furthermore, since it is perfectly legal in QWeS2T for a web service u to call another
service u′ (which in turn could call other services), a derivation of Σ ` ∆ needs to typecheck u before u′, thereby
following a total ordering of web services that respects these dependencies. Rather than explicitly searching for a
workable ordering, we exploit our having abstractly defined Σ, ∆ and the constituent Ω’s to be multisets. If Σ ` ∆ is
derivable, then we know that there is an appropriate ordering of the services therein. Note that this ordering may hop
back and forth among the various nodes. Observe also that, by and large, this corresponds to the way we use the web:
we need to know about a URL before we can create a web page or service that uses it (we do not model the possibility
of modifying an already published service in this work).

2.5 Metatheory
We conclude this section with a study of the metatheory of QWeS2T, which will show that this language admits
localized versions of type preservation and progress, thereby making it a type safe language. The techniques used to
prove these results are fairly traditional. We used the Twelf proof assistant [1, 14] to encode each of our proofs and to
verify their correctness. All these proofs can be found at [17]. All went through except for the proof of the Relocation
Lemma, because we could not express the form of its statement in the meta-language of the proof-checker. Instead,
we carried out a detailed proof by hand.

The analysis begins with a very standard substitution lemma. Note that URL’s are never substituted in the semantics
for QWeS2T, and therefore do not require a separate substitution statement.

Lemma 1 (Substitution). If Σ | Γ `w e : τ and Σ | Γ, x : τ `w e′ : τ ′, then Σ | Γ `w [e/x] e′ : τ ′.

Proof. By induction on the derivation of the judgment Σ | Γ, x : τ `w e′ : τ ′. It comes “for free” in Twelf.

The following relocation lemma says that if an expression is typable at a world w, then it is also typable at any other
world w′ (note that the statement implicitly relocates its local assumptions Γ to w′—we will however use this lemma
in the special case where Γ is empty). A similar, but slightly more complicated result is used in Lambda 5 [11, 10].

Lemma 2 (Relocation). If Σ | Γ `w e : τ , then Σ | Γ `w′ e : τ for any world w′.

Proof. By induction on the derivation of the judgment Σ | Γ `w e : τ . A Twelf representation of this proof can be
found in [17], but note that the meta-language of the proof checker did not support the quantification pattern in this
proof. However, the Twelf representation does encode our manual proof.
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At this point, we are able to state the type preservation theorem, whose form is fairly traditional except maybe for
the need to account for the valid typing of the web service repository before and after the evaluation step.

Theorem 3 (Type preservation). If ∆ ; e 7→w ∆′ ; e′ and Σ | · `w e : τ and Σ ` ∆, then Σ′ | · `w e′ : τ and
Σ′ ` ∆′.

Proof. The proof proceed by induction on the derivation of ∆ ; e 7→w ∆ ; e′. It uses the Substitution Lemma in the
cases of rules step app3, step fix and step call3. It also uses the Relocation Lemma to handle rules step call3
and step expect1.

The proof of progress relies on the following Canonical Form Lemma, whose statement and proof are standard.

Lemma 4 (Canonical Form). If e val, then
• if Σ | Γ `w e : unit, then e = ();
• if Σ | Γ `w e : τ → τ ′, then there exists e′ such that e = λτ :x. e′;
• if Σ | Γ `w e : τ × τ ′, then there exist e1 and e2 such that e = 〈e1, e2〉, e1 val and e2 val;
• if Σ | Γ `w e : susp[τ ], then there exists e′ such that e = hold e′;
• if Σ | Γ `w e : srv[τ ][τ ′], then there exist w′ and u such that e = url(w′, u).

Proof. By induction on the given derivation of e val and inversion on the appropriate typing rules.

The progress theorem is again fairly standard, with a proviso for the web service repositories of QWeS2T.

Theorem 5 (Progress). If Σ | · `w e : τ and Σ ` ∆, then
• either e val,
• or there exist e′ and ∆′ such that ∆ ; e 7→w ∆′ ; e′.

Proof. By induction on the given derivation of Σ | · `w e : τ .

3 Examples

We will now show how some common and not-so-common web development efforts can be modeled using QWeS2T.
We begin in Section 3.1 with expressing the creation and use of standard web pages, possibly containing JavaScript-
style mobile code. In Section 3.2, we look at parameterized web pages and services where the server must process
client input to dynamically produce the result. Up to that point, all examples will be pretty standard and can be
implemented more or less straightforwardly with current tools. In Section 3.3, we show some more advanced web
service interactions that are currently much harder to implement using existing technologies.

For readability, we extend QWeS2T with an ML-like let construct, where “let x = e1 in e2 end” is understood
as syntactic sugar for (λx : τ. e2) e1. Furthermore, to make the examples below more visually appealing, we will
use the types html, info, query and result. To stay within the confines of QWeS2T as described in Section 2, they
can all be taken as synonyms for unit. Rather than denoting our hosts as w possibly subscripted, we assume we
have a node www.server.com that will be playing a server role in our example, and a client called client . We will
introduce more complex setups as needed. Finally, in commentary, we will often write a URL url(www.server.com, u)
as www.server.com/u for service identifier u.

3.1 Web Pages in QWeS2T

When a browser requests a web page, it sends an HTTP request to the web server that provides it, which returns it as
HTML code. Therefore, a web page can be understood as a web service that returns a value of type html. Since no
interesting input needs to be processed, it is simply invoked with the unit element, (), of type unit. This is the typical
way static web pages are retrieved.
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3.1.1 Web Page without JavaScript Code

We start with a very simple example where server www.server.com publishes a web page with contents someHTML.
The server’s execution results in the creation of an externally visible identifier for it, which we call webpage . From
there on, this page can be referenced by the URL www.server.com/webpage , which is a service of type srv[unit][html]
located at www.server.com. The client will need to acquire this URL somehow (this is not modeled within the exam-
ple). To retrieve the contents of the web page, the QWeS2T client code simply call this URL with value (). The code
for both the server and the client is given next. The curvy arrow between the two blocks of code indicates that the
URL is communicated out of band.

www.server.com
let
page = someHtml

in
publish x : unit.page

end

www.server.com/webpagey

client
call url(www.server.com,webpage) with ()

A simple variant of this code can model dynamically generated web pages that use server-side include (SSI), a tech-
nique by which the server puts together the page from HTML snippets held in various files. Say for example that our
page is assembled from parts header , body and footer . Then, we would define page as f header body footer for
some concatenation function f .

3.1.2 Web Pages with Embedded JavaScript Code

A web page can embed JavaScript code that will be executed by the browser on the client side. Since JavaScript code
will have an effect on the page rendered to the user, it can be seen as a function that takes an HTML document and
returns an HTML document.

www.server.com
let
script = hold λx : html. x
page = 〈script , someHtml〉

in
publish x : unit.page

end

www.server.com/webpagey

client
let

url = url(www.server.com,webpage)
page = call url with ()

in
(resume (fst page)) (snd page)

end

Therefore, a web page is now a pair consisting of a (suspended) script of type susp[html→ html] and a source HTML
document of type html. Execution on the server will again result in a URL www.server.com/webpage , this time of
type srv[unit][(susp[html→ html])× html]. Upon retrieving this page, the client’s browser will extract the script and
the source HTML markups, and apply the former to the latter, thereby rendering the processed page to the user. The
client and server code above illustrates this idea using the identity function as the script.

3.1.3 Web Pages with External JavaScript Code

A web page can directly embed JavaScript code between <script> tags, or it can contain a URL to an external
JavaScript file using the src attribute of this tag. In this case, the web browser first retrieves the page, then the
JavaScript file, and finally applies this script to the contents of the web page. We model this mechanism in QWeS2T as
follows: the browser publishes the script file at some URL scriptUrl (which is public, but that the client does not need
to know), it installs an auxiliary function in the page, fetcher , whose job is to fetch scriptUrl for the client, and finally
it publishes a pair consisting of the fetcher and the source HTML document at URL www.server.com/webpage .

The client code does not change with respect to the previous example and is reproduced below only for clarity.
This matches our everyday experience on the Web: how JavaScript is embedded in a web page is irrelevant to us. At
execution time, however, the behavior on the client changes significantly: it retrieves the page just as before, it calls
the code portion (now the fetcher) on the HTML data, but this times this has the effect of downloading the script file
at scriptUrl which is unpacked into the function that is applied to the HTML data.
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www.server.com
let
scriptUrl = publish x : unit.(hold λx : html. x)
fetcher = hold (resume (call scriptUrl with ())
page = 〈fetcher , someHtml〉

in
publish x : unit.page

end

www.server.com/webpage
(www.server.com/scriptUrl)y

client
let
url = url(www.server.com,webpage)
page = call url with ()

in
(resume (fst page)) (snd page)

end

3.2 Web Services

In this section, we allow the client to pass parameters to the remote code on the server. In this way, we can use
QWeS2T to express a variety of common web-based interactions, in particular: dynamically generated web pages
requested using HTTP requests with POST/GET arguments (e.g., when doing web searches), AJAX calls embedded
within web pages (e.g., when panning outside the current view in Google Maps), and SOAP-based web services (often
found in server-to-server exchanges).

3.2.1 Web Service Definition

In our next example, we want to write a web service that performs a search based on meta-information about who is
doing the search (of type info) and on a search query (of type query) submitted by the client. We assume that this
service returns a result of type result. The server simply publishes a service (at URL www.server.com/search) that
takes these two arguments, calls an internal search function, and returns the result to the client. This service has type
srv[info × query][result]. A client can then use this service by calling this URL on arguments of interest, modeled
below as the pair 〈myInfo,myQuery〉.

www.server.com
let
f = λx : info× query. (search x )

in
publish z : info× query.f z

end

www.server.com/searchy

client
let

url = url(www.server.com, search)
in

call url with 〈myInfo,myQuery〉
end

3.2.2 Web Service API

To facilitate the usage of this service, we want to provide the client with an API that will perform the call. This API will
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be published as a script that, once executed on the client side, will call the remote web service and returns the result.
This script is published on the server at the URL www.server.com/api . The type of this URL is srv[unit][susp[query×
info → result]]. The client can then download the script, install it and use the embedded function just as any local
function. Note that the client does not need to be aware of the underlying search URL, www.server.com/search , even
if it is public.

www.server.com
let
url = url(www.server.com, search)
script = hold λz : query × info. (call url with z)

in
publish x : unit.script

end

(www.server.com/search) www.server.com/apiy

client
let
url = url(www.server.com, api)
f = resume (call api with ())

in
f 〈myInfo,myQuery〉

end

3.3 Advanced Web Service Interactions

In this section, we show how QWeS2T can easily express more complex forms of web interaction. Although useful,
these types of services are uncommon on today’s Web. We speculate that this may be due to the fact that expressing
such complex interactions is difficult with current web technologies—remember that client and server code are typ-
ically written in different languages, with few recent exceptions. Yet, it takes just a couple of lines for QWeS2T to
express each of these interactions.

3.3.1 Customized API

If we assume that the client’s information myInfo does not change from one query to another in the last example,
then the server could customize the script for each client based on its information. In the code below, the server
publishes a script www.server.com/api that is expected to be called with the client’s information. The server then
returns a specialized version of this script that the client can repeatedly call by just providing queries. This time, the
published script has type srv[info][susp[query → result]], which can be viewed as a curried version of what we had in
Section 3.2.2 (modulo the intervening suspension).

www.server.com
let
url = url(www.server.com, search)
script = λx : info. hold λy : query. (call url with 〈x, y〉)

in
publish x : info.script x

end

(www.server.com/search) www.server.com/apiy

client
let

url = url(www.server.com, api)
f = resume (call url with myInfo)

in
f myQuery

end

3.3.2 Customized Web Service

Going one step further, rather than returning a customized API, the server may want to provide a specialized service
for each client. This client-specific service will be published automatically on the server side when the client needs
it for the first time — Google Sites allows something like this. The server will return the URL of this personalized
service to the client. The code below illustrates this idea with a custom search functionality.
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www.server.com
let
url = url(www.server.com, search)
f = λz : info× query. (call url with z)

in
publish x : info.publish y : query.f 〈x, y〉

end

(www.server.com/search)
www.server.com/customSearch
www.server.com/mySearchUrly

client
let
url = url(www.server.com, customSearch)
mySearchUrl = call url with myInfo

in
call mySearchUrl with myQuery

end

Here, the server initially publishes a URL www.server.com/customSearch available to any host. When a specific
client invokes it with its own information, myInfo, the server publishes a search service customized to this client and
makes it available on the spot as the URL www.server.com/mySearchUrl . The client can then use this personalized
URL directly to carry out its queries. The type of www.server.com/customSearch is srv[info][srv[query][result]] and
the type of www.server.com/mySearchUrl is srv[query][result].

3.3.3 Web Service Auto-Installer

For our last example, assume the client has a web server of its own, www.client.com, and wants to provide its cus-
tomers with a web service on www.client.com that makes use of functionalities supplied by www.server.com. When
the client’s customer, call it customer , needs the service, it can contact the client directly without any need to know
that the bulk of the work is done by the server. The standard way to do all this is for the client to manually create a
service on www.client.com and configure it to call the server. This requires more sophistication of the client than in
all the previous examples, which involved doing no more than clicking on a link.

In QWeS2T, we can do much better. In the code snippet below (which builds on our search example), the server
provides a script, www.server.com/installer (of type srv[info][susp[srv[query][result]]]), that, when invoked by the
client with input clientInfo, will automatically create and publish the customized web service www.client.com/clientSearch
(of type srv[query][result]) at www.client.com. It is this URL that customer will use for its searches. Then we are
back to the situation where the client needs to do no more than clicking on a link.

www.server.com
let
url = url(www.server.com, search)
f = λz : info× query. (call url with z)
script = λx : info. hold (publish y : query.(f 〈x, y〉))

in
publish x : info.(script x)

end

(www.server.com/search)
www.server.com/installery

www.client.com
let
url = url(www.server.com, installer)
script = call url with clientInfo

in
resume script

end

x www.client.com/clientSearch

customer
call url(www.client.com, clientSearch) with myQuery

4 Prototype Implementation
As a proof of concept, we have developed a fully-functional prototype implementation of QWeS2T. It uses the HTTP
protocol to enable any host on the Internet on which our prototype has been installed to interact with any similarly
equipped node. We have installed it on various machines in our lab and used this setup to run all the examples discussed
in Section 3, and a few more. Within each node, our prototype consists of three components:

• The web service repository holds the services published by the node as well as information about their type.
In this way, it implements both the local service repository that we called Ω in Section 2 and the portion of the

106 Berndt Farwer (ed.); LAM’10; Volume 1, issue: 1, pp. 93–109



service typing table Σ that pertains to this host (we chose to implement Σ in a distributed fashion). The former
is used at run-time, the latter during typechecking. The web service repository is implemented as an SQLite
database.

• The interpreter, the core of our prototype, is a relatively faithful implementation of the rules in Section 2. It
performs two main duties:

– It typechecks all the code that originates at the local node and answers any typing requests from other
nodes. It typechecks URL’s found in local code by asking the host where the corresponding service resides
for the correct type. Therefore, our prototype implements rule of url in Section 2 in a distributed fashion.

– It executes both local code and any mobile code that is received while interacting with other hosts. It
publishes local services by inserting them in the local web service repository and fetches them from there
when receiving an execution request from a remote host. It also calls services elsewhere through the
web interface (see next). In our prototype, remote code is executed remotely: the internal expression
expect e from w is an artifact of the semantics and does not appear in our implementation—this is the only
departure from the rules in Section 2.

The interpreter is written in Python and interfaces with the other two components of the local copy of the system.
A new instance of the interpreter is started every time a service on the local node is invoked.

• The web interface is the gateway to all remote hosts. Half of its job is to receive remote requests, extract the
service name and arguments, spawn a new interpreter and send the result back. The other half is to package
remote service invocations, send them on the network, and deliver the result to the local interpreter. It is im-
plemented as a PHP script running on the local web server (Apache in our setup). It translates service requests
to/from the interpreter into HTTP messages. It uses POST/GET arguments to transmit the service identifier and
the web service parameters (“e2” in call e1 with e2) using the JSON library to encode the latter into ASCII.

5 Related Work

The popularity of web applications has fueled a market for development environments and programming support,
mainly from industry. The closest to our proposal is Google’s Web Toolkit (GWT) [8], which allows writing webapps
entirely in Java. Because Java is strongly typed, typing mismatches between client code and server code are caught at
compile time. Client-side code is written as an extension of the RemoteService class and is compiled to JavaScript.
Server side code extends the RemoteServiceServlet class and is compiled to Java bytecode. While GWT is well
suited for traditional client-server applications, it was not designed for dynamic services such as our web service auto-
installer example. Other software companies have development tools for proprietary web applications solution, e.g.,
Adobe’s Flash and Microsoft’s Silverlight.

Academic research has been following industry. Links [5] is a web oriented programming language that also
compiles client-side code into JavaScript. With Links, functions are tagged as client or server to indicate where they
shall be executed. Server code is again static and once code has been generated, it cannot be customized and moved
around as QWeS2T could do in Section 3.3.

The design of QWeS2T is heavily inspired to Lambda 5 [10, 11]. Lambda 5 is an abstract programming language
for distributed computing that uses a modal type system to capture the notion of localized computation. QWeS2T can
be seen as a simplification of Lambda 5 specialized to web programming. As such, it streamlines this languages and
provides constructs that abstract the way we use the web directly. Lambda 5’s prototype, ML5 [11], although targeting
web programming, is limited to basic browser-server interactions and cannot express all examples in Section 3.3.

A number of authors have proposed abstract frameworks to study web programming and related concepts. By
expressing web services in a process algebra, Ferrara [7] is able to use verification techniques based on temporal logic
and process equivalence to gain correctness assurances, without loosing the ability to compile them to executable code.
By contrast, Jia and Walker [9] find a foundation of distributed computing in an intuitionist modal logic and distill a
programming language from it using the Curry-Howard isomorphism.

107 Berndt Farwer (ed.); LAM’10; Volume 1, issue: 1, pp. 93–109



6 Conclusions and Future Work

In this paper, we proposed a type safe language, QWeS2T, that provides an abstraction for two characteristic forms
of distributed computing found in web programming: mobile code and remote procedure calls. By specifying client-
server and server-server interactions in a single formalism, this model makes it easy to dynamically generate and
disseminate scripts and services. We proved that QWeS2T is type safe and we implemented a prototype.

In future work, we intend to develop QWeS2T in two directions. One is an extension of this language with
additional constructs, in particular support for parallel execution and asynchronous communication. We also plan to
extend our prototype with richer types, and eventually with a Document Object Model (DOM) Library to cope with
web standards, thereby allowing us to run more realistic web programming experiments with QWeS2T.

The other direction involves using QWeS2T as a basis for studying language-level mechanisms for secure web
programming. Specifically, we are interested in approaches to control access to services (e.g., a service provider
will want to restrict the use of a service to certain nodes) and to control the dissemination of data supplied to those
services (a client may refuse to supply sensitive data to a service if it were to forward this data to an untrusted node).
Preliminary work indicates that it is possible to extend the static semantics of QWeS2T to identify the nodes that will
be involved in the computation of a given expression and how their different services will be combined. This is similar
to the history-based security models proposed in [2, 3]. Therefore, we believe that we can braid a policy language
for static information flow security [12, 15, 4] into QWeS2T. Specifically, we anticipate attaching a security policy to
published services and the data they are invoked with. A similar idea was explored in [18, 20].
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