
Recent Advances in Unification for the EL Family
Franz Baader, Stefan Borgwardt, and Barbara Morawska

Theoretical Computer Science, TU Dresden, Germany
{baader,stefborg,morawska}@tcs.inf.tu-dresden.de

Abstract

Unification in Description Logics (DLs) has been proposed as an inference service that can, for
example, be used to detect redundancies in ontologies. For the DL EL, which is used to define several
large biomedical ontologies, unification is NP-complete. Several algorithms that solve unification in
EL have previously been presented. In this paper, we summarize recent extensions of these algorithms
that can deal with general concept inclusion axioms (GCIs), role hierarchies (H), and transitive roles
(R+). For the algorithms to be complete, however, the ontology consisting of the GCIs and role axioms
needs to satisfy a certain cycle restriction.

1 Introduction and Preliminaries
The description logic (DL) EL offers the constructors conjunction (CuD), existential restriction
(∃r.C), and the top concept (>) to build concept descriptions, starting with a set of concept
names NC and role names NR. Although quite inexpressive compared to other DLs, EL is used
to define biomedical ontologies, such as the large medical ontology SNOMED CT.1 From the
computational point of view, EL has the advantage over more expressive DLs that important
inference problems, such as the subsumption problem, are polynomial, even in the presence of
background knowledge formulated using so-called general concept inclusion axioms [12]. The EL
family of description logics consists of several logics that extend EL by means of expressiveness
that are useful for defining medical ontologies, but which do not increase the complexity of
reasoning [7].

In all logics of the EL family, concept descriptions are interpreted by interpretations I as
subsets of a domain ∆I . Each concept name A is assigned a set AI ⊆ ∆I and each role name r
a binary relation rI ⊆ ∆I ×∆I . Complex concept descriptions are then interpreted as follows:
>I = ∆I , (C u D)I = CI ∩ DI , and (∃r.C)I = {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}.
For example, the concept description Patient u ∃finding.(Injury u ∃location.Head) may be used to
describe the set of all patients with a head injury.

The most expressive member of the EL family of description logics for which unification
algorithms are available is ELHR+ . The concept descriptions of ELHR+ are built in the same
way as in EL. The logics differ in the kind of axioms that are allowed in the background
ontologies. A general concept inclusion axiom (GCI) is of the form C v D for two concept
descriptions C,D and is satisfied by an interpretation I if CI ⊆ DI . A role inclusion axiom
is of the form r ◦ r v r (transitivity axiom) or r1 v r2 (role hierarchy axiom) and is satisfied
by I if rI ◦ rI ⊆ rI or rI1 ⊆ rI2 , respectively. An ELHR+-ontology O is a finite set of such
axioms. Such an ontology is an EL-ontology if it contains no role inclusions. An interpretation
is a model of an ontology if it satisfies all its axioms. Ontologies are used to express background
knowledge about an application domain. For example, the GCI

∃finding.∃severity.Severe v ∃status.Emergency (1)

1see http://www.ihtsdo.org/snomed-ct/

S. Escobar, K. Korovin, V. Rybakov (eds.), UNIF 2012 (EPiC Series, vol. 24), pp. 1–6 1

Recent Advances in Unification for the EL Family Baader, Borgwardt, Morawska

expresses that every severe finding constitutes an emergency situation and the role inclusion
axiom partOf ◦ partOf v partOf says that the role partOf should be interpreted as a transitive
binary relation.

In the following, we consider an arbitrary ELHR+ -ontology O. A concept description C is
subsumed by a concept description D w.r.t. O (written C vO D) if every model of O satisfies
the GCI C v D. We say that C is equivalent to D w.r.t. O (written C ≡O D) if C vO D and
D vO C. If O is empty, we also write C v D and C ≡ D instead of C vO D and C ≡O D.

Unification

Unification in DLs has been proposed as a tool to detect redundancies in ontologies [11]. For
example, assume that the following two concept descriptions were introduced independently
into an ontology:

∃finding.(Head_injury u ∃severity.Severe) (2)

∃finding.(Severe_injury u ∃finding_site.Head) (3)

The above descriptions are not formally equivalent, nevertheless they are meant to represent
the same concept. They can be unified (i.e., made equivalent) by viewing Head_injury and
Severe_injury as variables and substituting them respectively with Injury u ∃finding_site.Head
and Injury u ∃severity.Severe.

Background knowledge can facilitate unification of concept descriptions. For example, as-
sume that, instead of (3), the concept description

∃finding.(Severe_injury u ∃finding_site.Head) u ∃status.Emergency (4)

occurs in the ontology. The descriptions (2) and (4) are not unifiable. They can, however, be
unified (with the same substitution as before) if the GCI (1) is in the background ontology.

To define unification more formally, we assume that the set NC is partitioned into concept
variables (Nvar) and concept constants (Ncon). A substitution σ maps every variable to a concept
description and can be extended to concept descriptions in the usual way. A concept description
is ground if it contains no variables and a substitution is ground if all concept descriptions in its
range are ground. Similarly, an ontology is ground if it contains no variables. In the following,
we assume that O is ground.

A unification problem w.r.t. O is a finite set Γ = {C1 ≡? D1, . . . , Cn ≡? Dn} of equations
between concept descriptions. A substitution σ is a unifier of Γ w.r.t. O if σ solves all the
equations in Γ w.r.t. O, i.e. if σ(C1) ≡O σ(D1), . . . , σ(Cn) ≡O σ(Dn). We say that Γ is
unifiable w.r.t. O if it has a unifier w.r.t. O. We call Γ w.r.t. O an EL- or ELHR+ -unification
problem depending on whether O contains role inclusions.

Connection to E-Unification

We can equivalently express unification w.r.t. ELHR+ -ontologies as unification in the equational
theory SLmO of semilattices with monotone operators, using additional identities to express
GCIs and role inclusions [6, 15]. This unification-theoretic point of view sheds some light
on our decision to restrict unification to the case of ground ontologies. In fact, if we lifted
this restriction, then we would end up with an extension of rigid E-unification [14, 13] by a
background theory. To the best of our knowledge, such variants of rigid E-unification have not
been considered in the literature, and are probably quite hard to solve.

2

Recent Advances in Unification for the EL Family Baader, Borgwardt, Morawska

Cycle-Restricted Ontologies
Unfortunately, our unification algorithms are not complete for general ontologies. We call O
cycle-restricted if C 6vO ∃w.C for every concept description C and every w ∈ N+

R , where
∃r1 . . . rn abbreviates ∃r1. . . .∃rn. We can show that this condition needs to be checked only
for the cases where C is a concept name or >. This allows us to decide in polynomial time
whether an ELHR+ -ontology is cycle-restricted [6].

The main reason why we need cycle-restrictedness of O is that it ensures that a substitution
always induces a strict partial order on the variables: For a substitution γ and X,Y ∈ Nvar, we
define

X >γ Y iff γ(X) vO ∃w.γ(Y) for some w ∈ N+
R . (5)

If O is cycle-restricted, this defines a strict partial order. This fact turns out to be an important
prerequisite for the proofs of completeness of our algorithms.

2 Unification Algorithms
The basis of all ELHR+ -unification algorithms are lemmata that give recursive characterizations
of the relation vO. We have developed two approaches for proving these characterizations: one
based on term rewriting [6] and another one based on a sequent calculus for subsumption [3, 5].
Previous algorithms for EL-unification w.r.t. the empty ontology were based on an even sim-
pler characterization of subsumption that only had to take into account the structure of the
compared concept descriptions [8, 9, 10]. Each of the following algorithms is based on one of
those earlier algorithms and generalizes it using one of the characterizations from [5] and [6].

Before we can describe the algorithms, we need some additional definitions. A flat atom
is either a concept name or an existential restriction ∃r.C ′, where C ′ is a concept name. We
call a concept description flat if it is a conjunction of flat atoms. In the following, we restrict
both the unification problem Γ and the TBox T to contain only flat concept descriptions. This
restriction is without loss of generality [6].

The Brute-Force Algorithm
The main result underlying all the following ELHR+ -unification algorithms is that ELHR+ -
unification is local, i.e. every solvable unification problem has a so-called local unifier. Let Γ be
a flat unification problem and O be a flat, cycle-restricted ELHR+ -ontology. We will consider
the set Attr, which basically consists of all atoms occurring as subdescriptions in subsumptions
in Γ or axioms in O and some additional flat atoms (see [6] for details). Furthermore, we
define the set of non-variable atoms by Atnv := Attr \Nvar. We call a function S that associates
every variable X ∈ Nvar with a set SX ⊆ Atnv an assignment. For such an assignment S, we
define >S as the transitive closure of {(X,Y) ∈ Nvar × Nvar | Y occurs in an atom of SX}. We
call the assignment S acyclic if >S is irreflexive (and thus a strict partial order). Any acyclic
assignment S induces a unique substitution σS , which can be defined by induction along >S :

• If X is a minimal element of Nvar w.r.t. >S , then we set σS(X) :=
d
D∈SX

D.

• Assume that σ(Y) is already defined for all Y such that X >S Y . Then we define
σS(X) :=

d
D∈SX

σS(D).

We call a substitution σ local if it is of this form, i.e., if there is an acyclic assignment S such
that σ = σS .

3

Recent Advances in Unification for the EL Family Baader, Borgwardt, Morawska

In [3], we have shown that any unifiable EL-unification problem has a local unifier. This
also holds for ELHR+ -unification problems [5, 6]. Thus, one can test solvability of ELHR+ -
unification problem in nondeterministic polynomial time by guessing an acyclic assignment S
and then checking whether the induced substitution σS is a unifier, using the polynomial time
algorithm for subsumption in ELHR+ [7]. This is a direct extension of the guess-and-test
algorithm for EL without background ontology from [8]. The following two algorithms try to
generate acyclic assignments in a more goal-oriented way instead of blindly guessing arbitrary
acyclic assignments.

The Rule-Based Algorithm
In [4] and [5], we extended the rule-based algorithm from [10] to deal with EL- and ELHR+ -
ontologies, respectively. The main idea underlying these algorithms is to guide the construction
of an acyclic assignment by the equivalences of the unification problem Γ. The algorithm
works by exhaustive application of certain rules to Γ. These rules can mark certain parts of Γ
as solved, create new equivalences to be solved, and extend the current assignment, which is
initially empty. Once Γ is completely solved, the current assignment yields a unifier of the
original problem.

We show on a simple example how these rules work. Given the equivalence ∃r.X ≡? ∃r.A,
where X ∈ Nvar and A ∈ Ncon, we can employ a rule to create the new equivalence X ≡? A
and mark the old one as solved. Another rule can subsequently solve this smaller equivalence
by adding A to SX . This yields the substitution X 7→ A, which solves the original identity.
In contrast, the brute-force algorithm from above would have to guess any local assignment,
yielding e.g. the substitution X 7→ A u ∃r.A, only to realize later that this is not a unifier.

The length of every sequence of rule applications is bounded polynomially in the size of Γ.
However, at each point, the algorithm has a nondeterministic choice which rule to apply. To
restrict the amount of nondeterminism, several eager rules were introduced that are always
applied first and leave no choice in their application. All of the rules are triggered by “unsolved
parts” of the unification problem, and thus the constructed assignment contains only necessary
non-variable atoms. In [4, 5], we added several Mutation rules to the original rules from [10] to
take into account the axioms of an ELHR+ -ontology.

The Reduction to SAT
In this last approach, we reduce the unification problem to the propositional satisfiability prob-
lem [6], which has the advantage that we can employ highly optimized SAT solvers to solve
unification problems. Basically, a satisfying propositional valuation yields a local unifier.

The propositional variables are of the form [C v D] for all atoms C,D of a unification prob-
lem Γ. Their intended meaning is as follows: if [C v D] is true, then the local substitution σ
induced by the valuation satisfies σ(C) v σ(D). Using these propositional variables, a set of
propositional clauses is constructed that (i) encodes Γ, (ii) expresses some relevant properties
of subsumption in ELHR+ , and (iii) ensures that the generated assignment is acyclic. A satis-
fying propositional valuation of these clauses yields an acyclic assignment S, and thus a local
substitution, in the following way: SX contains all non-variable atoms D for which [X v D]
is true. To account for ELHR+ -ontologies, the original reduction from [9] was modified in [6]
using the mentioned characterization of subsumption. More precisely, the clauses encoding the
properties of subsumption were extended to allow to take GCIs and role inclusions into account.

Consider O = ∅ and the example ∃r.X ≡? ∃r.A from before. This equivalence is encoded
in the clauses → [∃r.X v ∃r.A] and → [∃r.A v ∃r.X]. The clause [∃r.X v ∃r.A] → [X v A]

4

Recent Advances in Unification for the EL Family Baader, Borgwardt, Morawska

expresses that the subsumption ∃r.X v ∃r.A can only be solved by decomposition, i.e. strip-
ping away the common top-level existential restriction. There are several clauses that prevent
[X v ∃r.A] and [X v ∃r.X] from being true. Thus, this approach also yields only one unifier,
namely X 7→ A.

3 Minimal Unifiers
The brute-force algorithm and the SAT reduction yield all local unifiers in the sense that the
successful runs of these nondeterministic procedures generate exactly the acyclic assignments
that induce unifiers of the unification problem. In contrast, the rule-based algorithm only
generates a subset of the local unifiers. However, it is still complete since it generates all
minimal unifiers. To be more precise, we call a unifier minimal if it is minimal w.r.t. the
order �, where σ � θ iff σ(X) vO θ(X) holds for all X ∈ Nvar. In fact, locality of unification
w.r.t. O = ∅ was first shown in [8] by showing that every solvable unification problem has a
minimal unifier and that every minimal unifier is local.

Generating exactly the minimal unifiers would be advantageous since there are considerably
fewer minimal unifiers than local ones, and they are usually of smaller size. However, the rule-
based algorithm also generates unifiers that are not minimal. If we assume a slight generalization
of � to �X , where �X compares the unifiers only w.r.t. a subset X ⊆ Nvar, we are able to show [2]
that there cannot be an NP-procedure that generates exactly the �X -minimal unifiers in the
sense that the successful runs of the procedure on a unification problem Γ generate exactly the
acyclic assignments that yield �X -minimal unifiers of Γ. It is still open whether this result also
holds for the case of � = �Nvar .

4 Future Work
The main objective for future work is to find a unification algorithm w.r.t. arbitrary, not nec-
essarily cycle-restricted, ELHR+ -ontologies. We have implemented the rule-based algorithm
and the SAT reduction in our system UEL [1] for the case of acyclic terminologies. We have
also modified the SAT reduction into a MaxSAT problem that yields only the minimal uni-
fiers of a unification problem [1]. We plan on further optimizing our implementations and
extending them to deal with cycle-restricted ontologies. The main difficulty is that the pres-
ence of ELHR+ -ontologies other than acyclic terminologies increases the nondeterminism of our
decision procedures considerably.

References
[1] Franz Baader, Stefan Borgwardt, Julian Alfredo Mendez, and Barbara Morawska. UEL: Unifica-

tion solver for EL. In Yevgeny Kazakov, Domenico Lembo, and Frank Wolter, editors, Proc. of the
25th Int. Workshop on Description Logics (DL’12), volume 846 of CEUR Workshop Proceedings,
pages 26–36, 2012.

[2] Franz Baader, Stefan Borgwardt, and Barbara Morawska. Computing minimal EL-unifiers is hard.
In Thomas Bolander, Torben Brauner, Silvio Ghilardi, and Lawrence Moss, editors, Advances in
Modal Logic 9 (AiML’12), pages 18–35. College Publications, 2012.

[3] Franz Baader, Stefan Borgwardt, and Barbara Morawska. Extending unification in EL towards
general TBoxes. In Gerhard Brewka, Thomas Eiter, and Sheila A. McIlraith, editors, Proc. of
the 13th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’12), pages
568–572. AAAI Press, 2012. Short paper.

5

Recent Advances in Unification for the EL Family Baader, Borgwardt, Morawska

[4] Franz Baader, Stefan Borgwardt, and Barbara Morawska. A goal-oriented algorithm for unification
in EL w.r.t. cycle-restricted TBoxes. In Yevgeny Kazakov, Domenico Lembo, and Frank Wolter,
editors, Proc. of the 25th Int. Workshop on Description Logics (DL’12), volume 846 of CEUR
Workshop Proceedings, pages 37–47, 2012.

[5] Franz Baader, Stefan Borgwardt, and Barbara Morawska. A goal-oriented algorithm for unification
in ELH+

R w.r.t. cycle-restricted ontologies. In Michael Thielscher and Dongmo Zhang, editors, Proc.
of the 25th Australasian Joint Conf. on Artificial Intelligence (AI’12), volume 7691 of Lecture Notes
in Artificial Intelligence, pages 493–504. Springer-Verlag, 2012.

[6] Franz Baader, Stefan Borgwardt, and Barbara Morawska. SAT encoding of unification in ELHR+

w.r.t. cycle-restricted ontologies. In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, Proc.
of the 6th Int. Joint Conf. on Automated Reasoning (IJCAR’12), volume 7364 of Lecture Notes in
Artificial Intelligence, pages 30–44. Springer-Verlag, 2012.

[7] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In Leslie Pack Kael-
bling and Alessandro Saffiotti, editors, Proc. of the 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI’05), pages 364–369. Professional Book Center, 2005.

[8] Franz Baader and Barbara Morawska. Unification in the description logic EL. In Ralf Treinen,
editor, Proc. of the 20th Int. Conf. on Rewriting Techniques and Applications (RTA’09), volume
5595 of Lecture Notes in Computer Science, pages 350–364. Springer-Verlag, 2009.

[9] Franz Baader and Barbara Morawska. SAT encoding of unification in EL. In Christian G. Fermüller
and Andrei Voronkov, editors, Proc. of the 17th Int. Conf. on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR’10), volume 6397 of Lecture Notes in Computer Science, pages
97–111. Springer-Verlag, 2010.

[10] Franz Baader and Barbara Morawska. Unification in the description logic EL. Logical Methods in
Computer Science, 6(3), 2010.

[11] Franz Baader and Paliath Narendran. Unification of concept terms in description logics. Journal
of Symbolic Computation, 31(3):277–305, 2001.

[12] Sebastian Brandt. Polynomial time reasoning in a description logic with existential restrictions,
GCI axioms, and - what else? In Ramon López de Mántaras and Lorenza Saitta, editors, Proc.
of the 16th Eur. Conf. on Artificial Intelligence (ECAI’04), pages 298–302. IOS Press, 2004.

[13] Anatoli Degtyarev and Andrei Voronkov. The undecidability of simultaneous rigid E-unification.
Theoretical Computer Science, 166(1–2):291–300, 1996.

[14] Jean Gallier, Paliath Narendran, David Plaisted, and Wayne Snyder. Rigid E-unification: NP-
completeness and applications to equational matings. Information and Computation, 87(1–2):129–
195, 1990.

[15] Viorica Sofronie-Stokkermans. Locality and subsumption testing in EL and some of its extensions.
In Carlos Areces and Robert Goldblatt, editors, Advances in Modal Logic 7 (AiML’08), pages
315–339. College Publications, 2008.

6

	Introduction and Preliminaries
	Unification Algorithms
	Minimal Unifiers
	Future Work

