
Kalpa Publications in Computing
Volume 16, 2023, Pages 1–5

Proceedings of the 6th Workshop on Formal
Methods for ML-Enabled Autonomous Systems

The Vehicle Tutorial:
Neural Network Verification with Vehicle

Matthew L. Daggitt1, Wen Kokke3, Ekaterina Komendantskaya1, Robert Atkey3,
Luca Arnaboldi2∗, Natalia Slusarz1, Marco Casadio1, Ben Coke1, and Jeonghyeon Lee1

1 Heriot-Watt University, Edinburgh, UK
{md2006,ek19,nds1,mc248,bc90,jl2038}@hw.ac.uk

2 University of Birmingham, Birmingham, UK
l.arnaboldi@bham.ac.uk

3 University of Strathclyde
{wen.kokke,robert.atkey}@strath.ac.uk

Abstract
Machine learning components, such as neural networks, gradually make their way into

software; and, when the software is critically safe, the machine learning components must be
verifiably safe. This gives rise to the problem of neural network verification. The community
has been making rapid progress in developing methods for incorporating logical specifications
into neural networks, both in training and verification. However, to truly unlock the ability to
verify real-world neural network-enhanced systems we believe the following is necessary:

1. The specification should be written once and should automatically work with training
and verification tools. 2. The specification should be written in a manner independent of any
particular neural network training/inference platform. 3. The specification should be able to be
written as a high-level property over the problem space, rather than a property over the input
space (of the neural network). 4. After verification the specification should be exportable to
general interactive theorem provers so that its proof can be incorporated into proofs about the
larger systems around the neural network.

In this tutorial we presented Vehicle, a tool that allows users to do all of this. We provided an
introduction to the Vehicle specification language, and then walked attendees through using it to
express a variety of famous and not-so-famous specifications. Subsequently we demonstrate how a
specification can be compiled down to i) queries for network verifiers, ii) Tensorflow graphs to be
used as loss functions during training and iii) cross-compiled to Agda, a main-stream interactive
theorem prover. Finally we discussed some of the technical challenges in the implementation
as well as some of the outstanding problems.

Keywords: Programming Languages, Neural Network Verification, Adversarial Training,
Types, Domain Specific Languages.

∗Large portion of work undertaken whilst at University of Edinburgh

N. Narodytska, G. Amir, G. Katz and O. Isac (eds.), FoMLAS2023 (Kalpa Publications in Computing, vol. 16),
pp. 1–5



The Vehicle Tutorial: Neural Network Verification with Vehicle Daggitt, Kokke, Komendantskaya et al.

1 What is Vehicle?
Vehicle is a language for writing logical specifications for neural networks. At its heart is the Vehicle
specification language, a high-level, functional language designed for writing mathematically precise
specifications for neural networks networks.

For example, below is the start of a Vehicle specification for the famous ACAS Xu [9] verification
challenge. This code snippet1 declares the types of inputs and outputs of the neural network, as well
as the type of the neural network itself:

Vehicle type checker ensures type safety of specifications. Relevant error messages will be produced
if, for example, the code includes invalid vector indexing or uses input and output vectors that do not
match the network type. The Vehicle language also makes it easy to define other auxiliary properties
that ensure soundness of specifications, such as validity of inputs for a neural network, assuming the
minimum and maximum permissible input values:

Because one can safely compose definitions of functions, even difficult specifications can be broken
down to simpler subparts. For example, the below definition of ACAS Xu Property 3 (“If the intruder
is directly ahead and is moving towards the ownship, the score for COC will not be minimal.") relies
on the definition of the valid input we provided above:
Similarly, the definitions of directlyAhead, movingTowards and clearOfConflict are also given
in this compositional manner.

There are several scenarios for Vehicle usage once the specification is written and type-checked.
The specification can be automatically translated into the VNNLiB format [1] and used for verification
with one of the existing solvers, such as Marabou [10]. The interested reader can find more about
the type system underlying this part of Vehicle in [3].

It has been observed in the literature that neural network verification often has to include
property-driven training as its integral part [11, 8, 12, 13]. Therefore, the second usage scenario for
the specification is to generate a loss function for re-training the neural network in Python Tensorflow.
Finally, a Vehicle specification can be automatically converted into Agda code. These different usage
scenarios are shown in Figure 1, and were discussed in detail in the course of the Vehicle tutorial
at FOMLAS. Currently, adversarial example search (for given a property) is not directly enabled,
but is involved in training with loss functions generated by Vehicle.

2 The Vehicle Code and Tutorial Materials
Vehicle’s entire code is publically available at [5]. Figure 2 shows the overall architecture of the
Vehicle as a domain-specific language for neural network verification. As of recently, the Vehicle
installation has been simplified to

The second line additionally installs the verifier Marabou used by Vehicle as a Backend. Thus,
only the Vehicle developers are working directly with the sources in [5].

The Complete Manual detailing the language and the backends is available in [4].
The Tutorial materials, available in html format in [6] complement the Vehicle Manual in several

ways:

• Chapter 1 of the Tutorial gives a high-level discussion of the area of neural network verification
and of different tools and approaches that exist in the literature, placing Vehicle as a unifying
high-level language over several other existing tools;

• Chapter 2 introduces the reader to the basic syntax and command line interface of Vehicle,
by means of the ACAS Xu [9] example;

1The full Vehicle specification for ACAS Xu is given in [5, 6, 7].

2



The Vehicle Tutorial: Neural Network Verification with Vehicle Daggitt, Kokke, Komendantskaya et al.

Figure 1: A high-level overview of existing Vehicle backends.

• Chapter 3 discusses the popular verification problem of neural network robustness [2], and
inter alia introduces further details of Vehicle’s syntax and command line interface.

• Chapter 4 focusses on Differentiable Logics [13], as means of generating loss functions in Vehicle.
It also explains Vehicle’s interface with Tensorflow.

• Chapter 5 explains Vehicle’s integration with Agda.

The theoretical part of the tutorial, given in the above Chapters, is complemented by the Practical
Exercises. In particlar the Exercise Repository [7] contains:

• the code and networks that were used as examples within the tutorial chapters [6], as well as

• a directory with exercises offered for self-study to Vehicle tutorial attendees. The exercise
directory contains specific property prototyping tasks, coming packaged with trained neural
networks in ONNX format, data in IDX format and, where appropriate (semi-complete) Vehicle
specifications. There is a link to relevant directory at the end of each chapter of the Vehicle
tutorial. Most of the exercises come with model answers.

Some additional exercises in the exercise directory were created by Heriot-Watt university MSc
students Ben Coke and Jeonghyeon Lee, as part of their MSc dissertations.

3 The Tutorial Structure at FOMLAS’23
In recognition that FOMLAS audience is generally well-acquainted with the methodology underlying
neural network verification, the live FOMLAS tutorial started with detailed exposition of material
in Chapters 1 and 2 (Introduction and Vehicle Syntax), however the technical content of Chapter
2 (Robustness Verification) was proposed for a practical exercise session. The practical session was
followed by a live demo that covered material in Chapters 4 and 5.

3



The Vehicle Tutorial: Neural Network Verification with Vehicle Daggitt, Kokke, Komendantskaya et al.

Figure 2: Vehicle architecture.

4 Acknowledgements

The work was supported by the EPSRC grant EP/T026952/1, EP/T026960/1, EP/T027037/1 :
AISEC: AI Secure and Explainable by Construction. We thank FOMLAS organisers: Guy Amir,
Omri Isac, Guy Katz, Nina Narodytska for providing a venue for this tutorial.

References
[1] VNNLib format, https://vnnlib.org/, accessed on 01.12.2021
[2] Casadio, M., Komendantskaya, E., Daggitt, M.L., Kokke, W., Katz, G., Amir, G., Refaeli, I.: Neural

network robustness as a verification property: A principled case study. In: Shoham, S., Vizel, Y. (eds.)
Computer Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, August 7-10,
2022, Proceedings, Part I. Lecture Notes in Computer Science, vol. 13371, pp. 219–231. Springer (2022)

[3] Daggitt, M.L., Atkey, R., Kokke, W., Komendantskaya, E., Arnaboldi, L.: Compiling higher-order
specifications to SMT solvers: How to deal with rejection constructively. In: Krebbers, R., Traytel,
D., Pientka, B., Zdancewic, S. (eds.) Proceedings of the 12th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2023, Boston, MA, USA, January 16-17, 2023. pp. 102–120.
ACM (2023). https://doi.org/10.1145/3573105.3575674, https://doi.org/10.1145/3573105.3575674

[4] Daggitt, M.L., Kokke, W.: Vehicle Complete Documentation (2023), https://vehicle-lang.
readthedocs.io/, accessed on 01.08.2023

4

https://vnnlib.org/
https://doi.org/10.1145/3573105.3575674
https://vehicle-lang.readthedocs.io/
https://vehicle-lang.readthedocs.io/


The Vehicle Tutorial: Neural Network Verification with Vehicle Daggitt, Kokke, Komendantskaya et al.

[5] Daggitt, M.L., Kokke, W., Atkey, B., Ślusarz, N., Casadio, M.: Vehicle: the Developer Repository
(2023), https://github.com/vehicle-lang/vehicle, accessed on 01.08.2023

[6] Daggitt, M.L., Kokke, W., Komendantskaya, E.: The Vehicle Tutorial (2023), https:
//vehicle-lang.github.io/tutorial/, accessed on 01.08.2023

[7] Daggitt, M.L., Kokke, W., Komendantskaya, E., Atkey, R., Arnaboldi, L., Slusarz, N., Casa-
dio, M., Coke, B., Lee, J.: The Vehicle Tutorial: Repository with Practical Exercises (2023),
https://github.com/vehicle-lang/tutorial, accessed on 01.08.2023

[8] Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T., Zhang, C., Vechev, M.T.: DL2: training
and querying neural networks with logic. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA. vol. 97, pp. 1931–1941. PMLR (2019)

[9] Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An efficient smt solver
for verifying deep neural networks. In: International Conference on Computer Aided Verification. pp.
97–117. Springer (2017)

[10] Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P., Thakoor, S., Wu, H.,
Zeljić, A., et al.: The Marabou framework for verification and analysis of deep neural networks. In:
International Conference on Computer Aided Verification. pp. 443–452. Springer (2019)

[11] Komendantskaya, E., Kokke, W., Kienitz, D.: Continuous verification of machine learning: a
declarative programming approach. In: PPDP ’20: 22nd International Symposium on Principles and
Practice of Declarative Programming, Bologna, Italy, 9-10 September, 2020. pp. 1:1–1:3. ACM (2020).
https://doi.org/10.1145/3414080.3414081, https://doi.org/10.1145/3414080.3414081

[12] van Krieken, E., Acar, E., van Harmelen, F.: Analyzing differentiable fuzzy logic operators. Artif. Intell.
302, 103602 (2022)

[13] Slusarz, N., Komendantskaya, E., Daggitt, M.L., Stewart, R.J., Stark, K.: Logic of differentiable
logics: Towards a uniform semantics of DL. In: LPAR-24: The International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (2023)

5

https://github.com/vehicle-lang/vehicle
https://vehicle-lang.github.io/tutorial/
https://vehicle-lang.github.io/tutorial/
https://github.com/vehicle-lang/tutorial
https://doi.org/10.1145/3414080.3414081

	What is Vehicle?
	The Vehicle Code and Tutorial Materials
	The Tutorial Structure at FOMLAS'23
	Acknowledgements

